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Assessing Nonparallelism

in Bioassays

A Discussion for Nonstatisticians

Rose Gaines Das and C Jane Robinson

he classic F-test for

nonparallelism is widely used

for bioassays with linear log

dose-response lines to assess
parallelism, or, more correctly, to
examine the strength of evidence
against a null hypothesis that the two
lines are parallel. Alternative
methods for assessing parallelism
have been proposed, but their
suitability for any particular case
needs to be carefully considered.
Here we examine some advantages
and disadvantages of the different
approaches.

Why Bioassays Are Necessary: For
most biological therapeutic products
and vaccines, a bioassay for potency
measurement is a required part of the
specifications for batch release.
Potency is defined in ICH Q6B as
“the measure of the biological activity
using a suitably quantitative
biological assay (also called potency
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assay or bioassay)” and biological
activity as “the specific ability or
capacity of the product to achieve a
defined biological effect” (1).

Biological activity depends on the
integrity of certain features of a
molecular structure, often including
higher-order structure which cannot
be assessed by physicochemical
methods.

In many cases, a bioassay is the
only means to assess these aspects of
molecular structure and predict the
potency of a preparation. A bioassay
that gives a measurable dose—
response relationship (based on a
product attribute linked to biological
properties relevant to its clinical
action) is therefore essential for
quality control and calibration. In
addition to specifications for batch
release, bioassays play an important
role in stability, comparability, and
equivalence studies.

RELATIVE POTENCY

Bioassay systems are complex and
tend to be sensitive to a greater
variety of factors than are most
physicochemical techniques. Some
factors can be controlled, but some
cannot, and some may not be
identified. Variation in these factors
affects the response of a bioassay
system to a test product, so its
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potency measurement is not an
absolute value.Bioassays are therefore
comparative, with the biological
activity of a test material measured
relative to that of a reference
preparation (2). If the reference
preparation is very similar to the test
product, then their measured
biological dose-response relationships
should be affected equally by any
variation in the system. Relative
potency should therefore remain



constant even though the measured
response may vary among assays.

A fundamental assumption
essential to the concept of relative
potency is that the two biological
preparations compared (the reference
standard and the test product) must
behave similarly in the assay system.
One preparation must behave as
though it is a dilution of the other in
a completely inert diluent. As a
consequence, their dose-response
curves will have the same
mathematical form. Any
displacement between the curves
along the concentration axis is
constant and is a measure of relative
potency (Figure 1). Nonsimilarity of
two preparations may lead to dose—
response curves of different
mathematical form with variation in
the amplitude of that displacement.
So any attempted measurement of
relative potency would vary
depending on the concentration at
which it was measured.

To determine whether two
preparations demonstrate the same
dose—response relationship in a
bioassay, it is necessary to measure
the response of each one at several
doses spread over an appropriate
range. Measuring the response of a
preparation at a single dose does not
permit comparison of dose—response
curves. Assessing the similarity of
dose-response curves depends on
statistical analysis of the resulting
data.

PARALLEL LINE AssAY

AND THE F-TEsT

For many established or well
characterized bioassays (e.g.,
pharmacopoeial assays), a
mathematical transformation of the
response is selected to give a linear
relation (over a sufficiently wide
range of doses) with log dose. This is
the so-called “parallel line” assay.
One-way analysis of variance is
widely used to compare the means of
differently treated groups and is the
statistical method customarily used
for analysis of such an assay. For
bioassays, each preparation at each
dose level constitutes a “treatment” of
the bioassay system. The sum of
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Functional similarity of preparations is a fundamental requirement for determining
a valid relative potency. For bioassays with linear log dose-response relationships, this
leads to the requirement that the lines for preparations compared are parallel.
Statistically significant nonparallelism can compromise the acceptability of a bioassay
even if it is believed to be of little or no practical significance.

The classic test for parallelism is the F-test, which essentially compares the difference
in slopes of dose-response lines with the random variation of individual responses.
Even in assays that do not meet all statistical assumptions required for valid use of the
F-test, it generally provides a useful starting point for assessing the similarity of log
dose-response lines. The utility of alternative statistical tests in specific situations is

recognized in pharmacopoeia.

Often, during assay development, reduction of random variation improves assay
precision. Previously obscured differences in slopes of dose-response lines (whether
due to systematic variation in an assay or true dissimilarity in the preparations) may

then become apparent.

One proposed alternative to the F-test that is currently being widely discussed
permits what is described as an “acceptable” degree of nonparallelism. Such a method
would need to be used with caution: Appropriate definition of the acceptable limits of
nonparallelism in any individual case is crucial and requires an understanding of the
origin of that nonparallelism and its implications in clinical or other applications and
requires historical empirical data for each specific assay.

The fundamental requirement for similarity of dose-response relationships cannot
be ignored, and the most appropriate method for assessing similarity in the context
of the nature and design of specific bioassays must be carefully considered.

squares between treatments is
subdivided to give tests for overall
difference between preparations,
linearity of the transformed dose—
response lines, and parallelism of
reference and test preparations.

Such analysis provides classic tests
for parallelism, linearity, and
differences between preparations
based on the F-test and is the method
widely adopted by pharmacopoeias.
Essentially, it assesses nonparallelism
by comparing the difference in slopes
of two dose—response lines with the
random variation of their individual
responses — or noise.

The F-test is a test for the null
hypothesis that the slopes of a
reference and a test preparation are
equal, with the alternative hypothesis
being that their slopes are not equal.
That null hypothesis cannot be
shown to be true. Thus, it cannot be
concluded that the slopes are equal. It
can be concluded, however, that the
two parameters do not differ by a
greater amount than the difference
detectable using available data.

The power of the test to detect
differences depends both on the
magnitude of the difference to be

detected and the precision of the
available data. That is, to accept the
null hypothesis does not show that it
is true, but rather shows only that for
the observed data with their observed
variability, the observed difference is
not so large as to exclude the null
hypothesis. In other words, the null
hypothesis has not been shown to be
false, and it has not been proved that
the curves are nonparallel and the
preparations dissimilar, so there
remains the possibility that those
curves may be parallel and the
preparations similar. To reject the
null hypothesis shows (at the
probability level of the test) that it is
not true: It shows that the curves are
not parallel so the preparations are
not similar.

A mistake sometimes encountered
is the interpretation of accepting the
null hypothesis as showing that the
two slopes are equal. It must be
emphasized that this classic test
cannot be taken to prove parallelism.
However, its power can be
determined, and the difference that
would have to be detected to establish
nonparallelism (at the specified
probability level) can be calculated.



Figure 1: Transformed dose-response curves
for a test product and a reference standard
showing functional similarity in a bioassay;
the curves have the same mathematical form.
Displacement between the curves along the
concentration axis is constant and is a
measure of relative potency.
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Unless otherwise indicated, we use
the word difference in its general sense
here — meaning “not the same” or
“not equal” — without the nature of
the difference being specified.

As mentioned, bioassays are
subject to many sources of variability.
The response of an in vitro bioassay
may be affected by differences in,
e.g., batches of media, age of cell
stocks, speed of reagent additions, or
shear forces during mixing. Control
of some variables commonly improves
during assay development, and
improvement may continue even after
the assay is regarded as characterized
or established. Reducing the sources
of random variation improves
intraassay (repeatability) and
interassay (intermediate precision and
reproducibility) precision. Some
nonrandom (e.g., systematic) sources
of variation may remain, however,
and improvement in precision can be
accompanied by an increase in
nonparallelism as judged by the
F-test.This is because differences in
the slopes of dose-response lines
(whether caused by systematic sources
of variation or true dissimilarity in
the preparations) that were previously
obscured become apparent as random
variation (“noise”) of the data
decreases.

NONPARALLELISM

Detecting nonparallelism can have
serious consequences. For established
assays, detection of statistically
significant nonparallelism between

dose-response lines for test and
reference materials may lead to
rejection of a sample and failure of a
batch — or a requirement to retest.
Absence of statistically significant
nonparallelism between dose—
response lines for reference and/or
control samples often forms part of
the assay acceptance (system
suitability) criteria. So when
nonparallelism is detected, an assay
may need to be rejected.

The nature of bioassay analysis
and the susceptibility of bioassays to
so many variables (some of which
may not be controlled or controllable)
mean a certain portion of assays and/
or samples may give incorrect results
— including, e.g., a false result
demonstrating nonparallelism. In
recognition of this fact, protocols are
developed to define the actions to be
taken on failure of sample or assay.
Such protocols may allow for
retesting of a sample or retention of
an assay if only a limited portion of a
set of acceptance criteria fails.
Development of such protocols is
based on many factors, usually
including the history of an assay’s
performance.

If reduction of random variation in
an assay system leads to emergence of
previously obscured nonparallelism,
more test samples or assays may be
rejected or more retesting may be
required. For this reason, a criticism
sometimes made of the F-test is that
an improvement in assay precision
can be punished by the emergence of
nonparallelism. In some cases, such
statistically significant nonparallelism
is believed to be of little or no
practical significance. This is not a
new problem (2) and has led to
proposals for using alternative
statistical tests. Some propose
allowing an “acceptable” degree of
nonparallelism (3-5). One recent
suggestion is based on an
equivalence-testing approach that
proposes to test a different null
hypothesis (rather than the classic
hypothesis of equal slopes), namely
that two slopes may differ by some
specified amount but that this
difference is negligible and that they
may considered equivalent. Although

NovemBER 2008

this type of approach may be possible
in some circumstances, it requires
careful consideration of several
factors in the context of each specific
case as we discuss later on.

Origin of Nonparallelism:
Parallelism is a fundamental and
essential assumption for validity of
relative potency estimation.
Demonstration of nonparallelism
shows functional dissimilarity of the
two preparations compared and thus
invalidates an estimate of relative
potency. It is impossible to conclude
that any level of nonparallelism is
trivial with respect to potential
clinical consequences without
understanding the origin of that
nonparalellism.

A simplistic analogy from
physicochemical assays might be the
detection of a small difference (a
fraction of a percent) in molecular
weights of two batches of a
biopharmaceutical, a difference that
may be apparent only on
improvement or change of the
analytical technique. The difference
could be indicative of an amino acid
mutation, and the change of one
amino acid may be without clinical
consequence — or it may
fundamentally change the biological
properties of a molecule (6). So the
molecular weight difference cannot
be dismissed as trivial simply on the
basis of its magnitude.

A situation that can arise is that of
early batches of product that prove
satisfactory in the clinic and are
tested by an imprecise assay with no
apparent nonparallelism between test
and reference — but later batches
show non-parallelism when tested in
a more precise assay. Rather than
simply attributing this emerging
nonparallelism to the improved
precision of the assay, archived
samples of the early batches should be
tested in that improved assay if
possible to demonstrate comparability
of the clinical trial and later batches
of product. It may then prove
necessary to reconsider the suitability
of the reference standard.

If statistically significant
nonparallelism is evident for
preparations known to satisfy the
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Figure 2: In this uniformity test, each well of
two 96-well cell culture plates was seeded
with cells and treated identically to the
others. The optical readout for each plate has
been ranked into four grades and shaded
according to magnitude for visual impact.
Darker shading indicates larger values, so
solid squares indicate the 25% of wells with
the largest responses, and open squares
indicate the 25% of wells with the smallest
responses. Although treated identically, the
cells of each well do not show an identical
response. The distribution of responses within
a plate is not random, and the two plates
show a different distribution pattern.

assumption of similarity — for
example, aliquots of the same sample
— then assay design and procedures
must be examined for violations of
the assumptions underlying the
statistical analysis. In such cases, a
modified assay design or more
suitable analysis may be appropriate.
This is recognized in most
pharmacopoeial monographs by the
allowance of alternative justified and
validated statistical methods.

Bi0AssAY DESIGN AND ASSUMPTIONS
UNDERLYING STATISTICAL ANALYSIS
When considering the use of
bioassays, it is important to
distinguish between the fundamental
validity of an assay and the validity of
the mathematical and statistical
treatment of the resulting data. If a
fundamental assumption is not true
for a given assay, then data obtained
cannot lead to a correct result no
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matter what arithmetical processes
are applied. If, however, one or more
of the assumptions for statistical
validity is untrue, then it may be
possible to amend the assay design
and/or the method of computation.
For any final statement of potency
and its limits to be valid, both
fundamental and statistical validity
are required (7).

A number of data-related
assumptions underlie all statistical
methods. The design of a bioassay
must meet these assumptions as
closely as possible or try to
compensate for factors that may
violate them. One assumption on
which the F-test is based is that
experimental units are an
independent random selection from a
defined population and that
responses are determined completely
by dose. In reality, this is rarely the
case. As an example, consider a
common assay design in which
serial dilutions of samples are
loaded onto 96-well cell culture
plates. Wells in the corners, on the
edges, and in the center of one plate
differ in their environments, and
separate plates may be subject to
slightly different conditions, any of
which may affect responses in those
units (wells and plates).

Figure 2 shows an example assay
readout from cells cultured in 96-well
plates in which each well was treated
identically. For visual impact, the
optical density readout is ranked into
tour grades based on the magnitude
of response. It is obvious that the
cells in each well, although treated
identically, do not show an identical
response. The distribution of
responses within a plate is not
random, and the two plates show a
different distribution pattern.
Although a good assay design would
seek to reduce this variability and
compensate for those factors that
could not be eliminated, it is not easy
to achieve such an ideal in practice.
For some factors, block or other
structured designs can be considered
(8), but they are not always
practicable or feasible.

In many 96-well plate assays,
samples and doses are not distributed

completely randomly. Thus, as can be
seen from Figure 2, bias can be
introduced to the measured dose—
response relationship. A completely
random distribution of samples, on
the other hand, might lead to a
greater delay between dosing the first
and last wells, thus introducing yet
another factor that can affect the
measured response.

Serial dilution of samples is a
common practice (especially in
96-well plate assays) that is rapid and
logistically simple, thus reducing
operator error, and economical in its
use of sample material. However, it
can lead to an error being propagated
systematically through the dose series
of a sample, causing nonparallelism
of dose—response curves because the
responses at any dilution are not
independent, but rather depend on
the preceding dilutions. Figure 3
shows the divergence of three
nominally identical dilution curves of
the same material. Such divergence
may be the result of propagated
dilution errors causing nonparallel
dose-response curves. Alternatively,
there might be row effects that
become apparent only at higher
response levels, or there could be
some other unrecognized source of
bias.

Various features of experimental
design can reduce such bias or permit
an assessment of its effect. One
simple method of direct assessment is
treatment of identical preparations as
independent samples and measuring
the nonparallelism of their dose—
response lines (and their relative
potency, which should equal 1).
Blinding operators to the identity of
the samples removes further possible
sources of bias so coded or hidden
replicates are included in some assay
designs.

In some bioassays, known
differences between reference
standard and test preparation in
excipient composition or slight
molecular modifications of the
biological material affect the
response, leading to a degree of
nonparallelism. Such violations of the
fundamental principle of functional
similarity do not constitute a



statistical problem, so there should be
no attempt to apply a statistical
adjustment to disguise them. When
nonparallelism arises because of the
formulation, it may be possible to
adjust assay conditions to obtain
parallel dose—response curves — by,
for example, adding components to
the test or reference solutions that
reduce differences in their excipient
composition. An example of dealing
with nonparallelism arising because
of dissimilarity of the materials is
seen in the measurement of serum
antibody concentrations in a range of
samples for which results depend on
the dose range of the sample, and
different assay systems may give
different results (5). A possible
violation of the fundamental
assumption of parallelism is
recognized, and the extent of such
violation may even be quantified. For
such a situation, sample dilutions
covering a broad dose and response
range can be used to derive a
“representative” value of relative
potency (5).

If no such suitable adjustment of
the assay system is possible, then the
appropriate action — which would
have to be agreed upon with a
regulatory authority and supported by
clinical or other data — may be to
accept the nonparallelism until, for
example, more suitable reference
standards or assay systems can be
developed (9).

STATISTICAL ALTERNATIVES

TO THE F-TEST

Specific experimental situations may
require particular statistical
approaches. This was recognized by
R.A. Fisher in discussing the validity
of estimates of error used in
significance tests (10). He noted the
problem that “standardized methods
of statistical analysis have been taken
over ready-made from a mathematical
theory, into which questions of
experimental detail do not explicitly
enter”. It is frequently the case that
estimates of residual error calculated
for individual biological assays do not
satisfy the statistical assumptions
required for a classic F-test. This
issue is explicitly recognized in the
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Figure 3: Three nominally identical serial
dilution curves in adjacent rows in a 96-well
plate show divergence of dose-response
curves. Open diamonds denote responses
from row B, solid diamonds responses from
row C, and open triangles responses from row
D. This divergence may be attributed to
propagation of dilution errors through the
series and/or positional effects on the plate,
resulting in nonparallel dose-response curves.
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European Pharmacopoeia (EP), which
suggests ways to overcome the
problem. Alternative approaches
should be adopted when they are
appropriate and validated for a
specific experimental situation.

Various alternative approaches
have been suggested for specific
situations. Modifications of the
acceptance criteria for classic
statistical tests form the basis for
some. For example, Story et al.
propose a multiplication factor for the
F value and present empirical data for
it in the context of a particular assay
(11). In some circumstances, an
estimate of the residual error based
on historical or validation data may
be used, as suggested by the EP.

This requires empirical data and
ongoing validation of the estimate
used. Other alternative methods are
based on consideration of the dilution
profile of a test sample, and
acceptability of potency estimates is
assessed using the consistency and
magnitude of changes in the
estimates of potency for a dilution
series of the test sample (5, 12).

An approach recently suggested is
based on equivalence testing (3, 4). It
proposes that the hypothesis of the
classic test is “flawed,” and bases its
alternative approach on showing that
two lines are “sufficiently parallel.”
The problem Hauck et al. identify is
that “perfectly acceptable assay results
may fail due to good precision” and

that “obviously faulty assay results
may pass due to poor precision” as
illustrated in Figure 3 of Reference 3.
Limits are thus set for the acceptable
magnitude of the difference in slopes
and for the precision associated with
that difference. Although the F-test
and this equivalence test lead to the
same conclusion in many cases
(Figure 4, example A,), they can in
certain cases lead to different
conclusions concerning parallelism
and hence functional similarity of
biological preparations (Figure 4,
examples B95 and B99).

Under the equivalence-testing
approach, it is proposed that two
lines with slopes that differ
significantly from one another but for
which the difference is “statistically
less” than some specified value
should be described as “equivalent”
(Figure 4, example B,). This
distinguishes the equivalence
approach from the classic F-test
approach. The approach has proved
useful in some circumstances. For
example, in comparisons of two
different clinical treatments or drugs,
it may be required that a statistical
test have the power to detect
differences of a specified (clinically
important) magnitude, and it may be
further considered that the cost of
changing treatments is not justified
unless the difference in treatments is
“sufficiently large.” The definitions of
large or clinically important
differences must be defined in the
context of a particular biological or
medical situation. A crucial question
for this approach is then how the
criterion of sufficiently parallel might
be defined for a biological assay —
and more critically, what the
implications might be of any proven
deviations from parallelism even
though such differences fall within
some specified interval.

Again, the word difference is used
in its general sense here. However,
to apply the equivalence-testing
approach, it is necessary to select
and define some measure of the
difference in slopes (e.g., the
absolute numerical difference of
slopes or the deviation of the ratio of
slopes from a value of 1.0). It is then



necessary to specify how a
confidence interval for the selected
measure of difference can be
calculated.

A situation where obviously faulty
assay results may pass due to poor
precision is unacceptable. It must be
noted that low assay precision is an
issue distinct from assay validity,
however, and possible consequences
are not limited to the failure to detect
nonparallelism. Various criteria will
determine the level of assay precision
required in each particular case, and
it may be necessary to take measures
to improve assay precision through
modification of experimental
procedures.

DiscussioN
Different approaches to assessing
nonparallelism may be appropriate in
the context of specific experimental
situations. In many cases, the classic
F-test can serve as a starting point for
assessment of similarity, and it may
be possible to evaluate the extent to
which the underlying statistical
assumptions for this test are satisfied.
Application of an appropriate method
and selection of appropriate criteria
for assessment of parallelism depend
on understanding the relevant
properties of the biological test
material, reference preparation, and
assay system, as well as the purposes
for which the result is required.
Historical empirical data are often
key to determining the approach, and
wherever empirical approaches are
considered suitable, they should be
included in assay validation.
Sometimes practical and feasible
assay designs may not meet the
statistical assumptions required for
the classic analysis of variance. In
such situations, it may be possible to
determine the impact of an assay
design on the numerical statistical
analysis. Underestimation of the
residual error frequently results, with
the consequence that an F value
determined in the usual way is too
large and hence appears to be
significant. Assessment of deviations
from parallelism (and hence the
significance level) that may be
expected on the basis of the assay
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Figure 4: Contrasting F-test and equivalence testing in assessing parallelism; these examples
illustrate possible differences in outcome when slopes are examined by the two methods. (Note:
Although 95% intervals are typically used, other intervals may be used, e.g.,, 99%. The confidence
interval width to be used with either approach would need to be specified.)
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1
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e :
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B i
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I | ]
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'
- 0 + - 0 +

Difference in Slope

Difference in Slope

Table 1: Data for Figure 4, comparing F-test and equivalence testing, show levels set for confidence
intervals of slope differences, results (intervals for slope differences), null hypotheses, and conclusions

F-Test
Confidence
Interval Confidence Null Hypothesis:
Level Interval Result Slopes Are Equal Conclusion
Ay 95% Includes 0 (slopes are equal) Not rejected Slopes do not
differ significantly.
By, 95% Does not include 0 (slopes are  Rejected Slopes differ
not equal) significantly.
By 99% Includes 0 (slopes are equal) Not rejected Slopes do not
differ significantly.
Equivalence Test
Confidence Null Hypothesis:
Interval Confidence Slopes Differ By
Level Interval Result >Equivalence Limit Conclusion
Ay 95% Completely within specified Rejected Slopes are
equivalence limits equivalent.
By, 95% Completely within specified Rejected Slopes are
equivalence limits equivalent.
By 99% Not completely within Not rejected Slopes are not

specified equivalence limits

design can be achieved by analyzing
coded duplicate samples , as used for
example in (13). In such situations, an
equivalence-testing approach might
also be appropriate. The EP indicates
possible approaches to use when an
assay design does not permit valid
estimation of the relevant residual
error from individual assays.

All these approaches are
essentially empirical and depend on
knowing the properties of the
biological preparations and assay
systems as well as supporting
historical data. Although broad

shown to be
equivalent.

guidelines may be suggested, each
situation and assay design is unique
and must be individually evaluated.
Moreover, all changes in
experimental conditions or assay
design would require revalidation.
Approaches to analyzing
nonlinear dose-response
relationships are more
mathematically and statistically
complex. The effects of the
mathematical formulation selected
— and of the constraints placed on
the various parameters — must be
evaluated (5, 14). The need is



recognized for fundamental validity
(for exact similarity of the dose—
response relationships), although
how to ensure that is less obvious.
For example, the order in which
multiple parameters are compared
must be considered as well as the
actions to be taken if one or more
parameters differ significantly
between the two curves.

Complete characterization of the
dose—response relationship may be of
primary importance when
characterizing the biological material.
However, for routine batch release of
biologicals with well-characterized
dose—response relationships, assay
designs based on the linear part of
the dose-response relationship may
prove appropriate. This is particularly
the case for animal-based assays,
which commonly involve ethical and
legal constraints on the number of
animals used, thus limiting the
number of data points that can be
obtained. For any type of bioassay,
cost or logistical considerations may
limit the number of data points. In
such cases, it frequently proves more
useful to maximize the number of
doses and the replicates of each dose
over the linear part of the curve
rather than attempting to span a
complete dose—response curve. For
the approximately linear part of the
curve, a classic parallel line analysis
can then be used.

The hypothesis tested by the
classic analysis of variance for assays
following the linear parallel-line
model is based on the essential
fundamental assumption of biological
similarity. It is thus appropriate for
assessing the validity of assays used
to estimate the relative potency of
identical preparations or those that
behave identically in the particular
assay system (and thus are
functionally identical).

If the preparations are not
functionally identical, then increased
assay precision (subject to statistical
validity of an estimate of precision)
may indeed lead to increased
rejection of assays. Improved
resolution resulting from greater
precision is always desirable.
Improved precision will not resolve
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two materials that really are
identical, but it will reveal previously
unresolved differences, offering the
possibility of exploring potential
clinical significance of a newly
detectable functional dissimilarity.

Failure to satisfy the classic “test
for parallelism” (demonstration of
significant deviations from
parallelism) is thus a clear indication
of an invalid estimate of relative
potency. This invalidity may result
from various causes, and it is
important to recognize these causes
and see that they are not obscured by
the approaches used to assess
nonparallelism. Such recognition can
lead to alternative interpretations of
the analysis or to alternative methods
of analysis — and hence to estimates
of potency that can be considered
valid in a given situation.

It is not possible to “test for
parallelism” because a hypothesis of
exact equality can never be proven.
Moreover, there is no single correct
way to test for nonparallelism. As
discussed by Fisher, no standardized
method of analysis should be taken
ready-made (10). It is important that
details of each experimental situation
are explicitly included in the analysis
and interpretation of resulting data.
In the case of bioassays, this includes
considering the nature of the
materials compared and the purpose
of that comparison in addition to the
assay design and statistical/
mathematical characteristics of the
biological response data. In no case
can the requirement for fundamental
validity of an assay and similarity of
dose— response curves be ignored.

REFERENCES

1 ICH Harmonised Tripartite Guideline
Q6B. Specifications: Test Procedures and
Acceptance Criteria for Biotechnological/
Biological Products. International Conference
on Harmonization of Technical Requirements
for Registration of Pharmaceuticals for
Human Use; www.ich.org/LOB/media/
MEDIA432.pdf.

2 Lightbown JW. Biological
Standardization and the Analyst: A Review. J.
Soc. Anal. Chem. 86, 1961: 216-230.

3 Hauck WW, et al. Assessing
Parallelism Prior to Determining Relative
Potency. PDA J. Pharmaceut. Sci. Technol. 59,
2005: 127-137.

4 Callahan JD, Sajjadi NC. Testing the
Null Hypothesis for a Specified Difference:
The Right Way to Test for Parallelism.
BioProcessing J. March—-April 2003.

5 Plikaytis BD, et al. Determination of
Parallelism and Nonparallelism in Bioassay
Dilution Curves. J. Clin. Microbiol. 32, 1994:
2441-2447.

6 Song Z, et al. A Single Amino Acid
Change (Asp 53— Ala53) Converts Survivin
from Anti-Apoptotic to Pro-Apoptotic. Mol.
Biol. Cell. 15(3) 2004: 1287-1296.

7 Jerne NK, Wood EC. The Validity and
Meaning of the Results of Biological Assays.
Biometrics 5, 1949: 273-299.

8 Lansky D. Strip-Plot Designs, Mixed
Models, and Comparisons Between Linear
and Nonlinear Models for Microtitre Plate
Bioassays in the Design and Analysis of
Potency Assays. Dev Biol. 107, 2002: 11-23.

9 Cornfield J . Comparative Bioassays
and the Role of Parallelism. J. Pharmacol.
Exper. Ther. 144, 1964: 143-149.

10 Fisher RA. The Design of Experiments,
Sixth Edition. Oliver & Boyd: London, UK,
1951.

11 Story MJ, et al. A New Parallelism
Acceptance Criterion for Validating Large
Plate Bioassay Results. J. Biol. Standardiz. 14,
1986: 249-254.

12 Klein ], et al. Validation of Assays for
Use with Combination Vaccines. Biologicals
27,1999: 35-41.

13 Robinson CJ, et al. The World Health
Organization Reference Reagent for
Keratinocyte Growth Factor, KGF. Growth
Factors 24(4) 2006: 279-284.

14 Gottschalk PG, Dunn JR. Measuring
Parallelism, Linearity, and Relative Potency

in Bioassay and Immunoassay Data. /.
Biopharmaceut. Stat. 15(3) 2005: 437-463. @

Corresponding author Rose Gaines Das is
a consultant in biostatistics (formerly head
of biostatistics at the National Institute for
Biological Standards and Control, in the
United Kingdom), gainesdasre@yahoo.co.
uk. C. Jane Robinson is principal scientist
at the National Institute for Biological
Standards and Control in South Mimms,
UK; jrobinson@nibsc.ac.uk.



