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The classic F-test for 
nonparallelism is widely used 
for bioassays with linear log 
dose–response lines to assess 

parallelism, or, more correctly, to 
examine the strength of evidence 
against a null hypothesis that the two 
lines are parallel. Alternative 
methods for assessing parallelism 
have been proposed, but their 
suitability for any particular case 
needs to be carefully considered. 
Here we examine some advantages 
and disadvantages of the different 
approaches.

Why Bioassays Are Necessary: For 
most biological therapeutic products 
and vaccines, a bioassay for potency 
measurement is a required part of the 
specifications for batch release. 
Potency is defined in ICH Q6B as 
“the measure of the biological activity 
using a suitably quantitative 
biological assay (also called potency 

assay or bioassay)” and biological 
activity as “the specific ability or 
capacity of the product to achieve a 
defined biological effect” (1).

Biological activity depends on the 
integrity of certain features of a 
molecular structure, often including 
higher-order structure which cannot 
be assessed by physicochemical 
methods.

In many cases, a bioassay is the 
only means to assess these aspects of 
molecular structure and predict the 
potency of a preparation. A bioassay 
that gives a measurable dose–
response relationship (based on a 
product attribute linked to biological 
properties relevant to its clinical 
action) is therefore essential for 
quality control and calibration. In 
addition to specifications for batch 
release, bioassays play an important 
role in stability, comparability, and 
equivalence studies.

Relative Potency

Bioassay systems are complex and 
tend to be sensitive to a greater 
variety of factors than are most 
physicochemical techniques. Some 
factors can be controlled, but some 
cannot, and some may not be 
identified. Variation in these factors 
affects the response of a bioassay 
system to a test product, so its 

potency measurement is not an 
absolute value.Bioassays are therefore 
comparative, with the biological 
activity of a test material measured 
relative to that of a reference 
preparation (2). If the reference 
preparation is very similar to the test 
product, then their measured 
biological dose–response relationships 
should be affected equally by any 
variation in the system. Relative 
potency should therefore remain 
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constant even though the measured 
response may vary among assays.

A fundamental assumption 
essential to the concept of relative 
potency is that the two biological 
preparations compared (the reference 
standard and the test product) must 
behave similarly in the assay system.
One preparation must behave as 
though it is a dilution of the other in 
a completely inert diluent. As a 
consequence, their dose–response 
curves will have the same 
mathematical form. Any 
displacement between the curves 
along the concentration axis is 
constant and is a measure of relative 
potency (Figure 1). Nonsimilarity of 
two preparations may lead to dose–
response curves of different 
mathematical form with variation in 
the amplitude of that displacement. 
So any attempted measurement of 
relative potency would vary 
depending on the concentration at 
which it was measured.

To determine whether two 
preparations demonstrate the same 
dose–response relationship in a 
bioassay, it is necessary to measure 
the response of each one at several 
doses spread over an appropriate 
range. Measuring the response of a 
preparation at a single dose does not 
permit comparison of dose–response 
curves. Assessing the similarity of 
dose–response curves depends on 
statistical analysis of the resulting 
data.

Parallel Line Assay  
and the F-Test

For many established or well 
characterized bioassays (e.g., 
pharmacopoeial assays), a 
mathematical transformation of the 
response is selected to give a linear 
relation (over a sufficiently wide 
range of doses) with log dose. This is 
the so-called “parallel line” assay. 
One-way analysis of variance is 
widely used to compare the means of 
differently treated groups and is the 
statistical method customarily used 
for analysis of such an assay. For 
bioassays, each preparation at each 
dose level constitutes a “treatment” of 
the bioassay system. The sum of 

squares between treatments is 
subdivided to give tests for overall 
difference between preparations, 
linearity of the transformed dose–
response lines, and parallelism of 
reference and test preparations.

Such analysis provides classic tests 
for parallelism, linearity, and 
differences between preparations 
based on the F-test and is the method 
widely adopted by pharmacopoeias. 
Essentially, it assesses nonparallelism 
by comparing the difference in slopes 
of two dose–response lines with the 
random variation of their individual 
responses — or noise.

The F-test is a test for the null 
hypothesis that the slopes of a 
reference and a test preparation are 
equal, with the alternative hypothesis 
being that their slopes are not equal. 
That null hypothesis cannot be 
shown to be true. Thus, it cannot be 
concluded that the slopes are equal. It 
can be concluded, however, that the 
two parameters do not differ by a 
greater amount than the difference 
detectable using available data. 

The power of the test to detect 
differences depends both on the 
magnitude of the difference to be 

detected and the precision of the 
available data. That is, to accept the 
null hypothesis does not show that it 
is true, but rather shows only that for 
the observed data with their observed 
variability, the observed difference is 
not so large as to exclude the null 
hypothesis. In other words, the null 
hypothesis has not been shown to be 
false, and it has not been proved that 
the curves are nonparallel and the 
preparations dissimilar, so there 
remains the possibility that those 
curves may be parallel and the 
preparations similar. To reject the 
null hypothesis shows (at the 
probability level of the test) that it is 
not true: It shows that the curves are 
not parallel so the preparations are 
not similar.

A mistake sometimes encountered 
is the interpretation of accepting the 
null hypothesis as showing that the 
two slopes are equal. It must be 
emphasized that this classic test 
cannot be taken to prove parallelism. 
However, its power can be 
determined, and the difference that 
would have to be detected to establish 
nonparallelism (at the specified 
probability level) can be calculated. 

Key Points 
Functional similarity of preparations is a fundamental requirement for determining 
a valid relative potency. For bioassays with linear log dose–response relationships, this 
leads to the requirement that the lines for preparations compared are parallel. 
Statistically significant nonparallelism can compromise the acceptability of a bioassay 
even if it is believed to be of little or no practical significance.

The classic test for parallelism is the F-test, which essentially compares the difference 
in slopes of dose-response lines with the random variation of individual responses.  
Even in assays that do not meet all statistical assumptions required for valid use of the 
F-test, it generally provides a useful starting point for assessing the similarity of log 
dose-response lines.  The utility of alternative statistical tests in specific situations is 
recognized in pharmacopoeia.

Often, during assay development, reduction of random variation improves assay 
precision. Previously obscured differences in slopes of dose–response lines (whether 
due to systematic variation in an assay or true dissimilarity in the preparations) may 
then become apparent. 

One proposed alternative to the F-test that is currently being widely discussed 
permits what is described as an “acceptable” degree of nonparallelism. Such a method 
would need to be used with caution: Appropriate definition of the acceptable limits of 
nonparallelism in any individual case is crucial and requires an understanding of the 
origin of that nonparallelism and its implications in clinical or other applications and 
requires historical empirical data for each specific assay.

The fundamental requirement for similarity of dose–response relationships cannot 
be ignored, and the most appropriate method for assessing similarity in the context 
of the nature and design of specific bioassays must be carefully considered. 
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Unless otherwise indicated, we use 
the word difference in its general sense 
here — meaning “not the same” or 
“not equal” — without the nature of 
the difference being specified.

As mentioned, bioassays are 
subject to many sources of variability. 
The response of an in vitro bioassay 
may be affected by differences in, 
e.g., batches of media, age of cell 
stocks, speed of reagent additions, or 
shear forces during mixing. Control 
of some variables commonly improves 
during assay development, and 
improvement may continue even after 
the assay is regarded as characterized 
or established. Reducing the sources 
of random variation improves 
intraassay (repeatability) and 
interassay (intermediate precision and 
reproducibility) precision. Some 
nonrandom (e.g., systematic) sources 
of variation may remain, however, 
and improvement in precision can be 
accompanied by an increase in 
nonparallelism as judged by the 
F-test.This is because differences in 
the slopes of dose–response lines 
(whether caused by systematic sources 
of variation or true dissimilarity in 
the preparations) that were previously 
obscured become apparent as random 
variation (“noise”) of the data 
decreases.

Nonparallelism

Detecting nonparallelism can have 
serious consequences. For established 
assays, detection of statistically 
significant nonparallelism between 

dose–response lines for test and 
reference materials may lead to 
rejection of a sample and failure of a 
batch — or a requirement to retest. 
Absence of statistically significant 
nonparallelism between dose–
response lines for reference and/or 
control samples often forms part of 
the assay acceptance (system 
suitability) criteria. So when 
nonparallelism is detected, an assay 
may need to be rejected. 

The nature of bioassay analysis 
and the susceptibility of bioassays to 
so many variables (some of which 
may not be controlled or controllable) 
mean a certain portion of assays and/ 
or samples may give incorrect results 
— including, e.g., a false result 
demonstrating nonparallelism. In 
recognition of this fact, protocols are 
developed to define the actions to be 
taken on failure of sample or assay.
Such protocols may allow for 
retesting of a sample or retention of 
an assay if only a limited portion of a 
set of acceptance criteria fails. 
Development of such protocols is 
based on many factors, usually 
including the history of an assay’s 
performance. 

If reduction of random variation in 
an assay system leads to emergence of 
previously obscured nonparallelism, 
more test samples or assays may be 
rejected or more retesting may be 
required. For this reason, a criticism 
sometimes made of the F-test is that 
an improvement in assay precision 
can be punished by the emergence of 
nonparallelism. In some cases, such 
statistically significant nonparallelism 
is believed to be of little or no 
practical significance. This is not a 
new problem (2) and has led to 
proposals for using alternative 
statistical tests. Some propose 
allowing an “acceptable” degree of 
nonparallelism (3–5). One recent 
suggestion is based on an 
equivalence-testing approach that 
proposes to test a different null 
hypothesis (rather than the classic 
hypothesis of equal slopes), namely 
that two slopes may differ by some 
specified amount but that this 
difference is negligible and that they 
may considered equivalent. Although 

this type of approach may be possible 
in some circumstances, it requires 
careful consideration of several 
factors in the context of each specific 
case as we discuss later on.

Origin of Nonparallelism: 
Parallelism is a fundamental and 
essential assumption for validity of 
relative potency estimation. 
Demonstration of nonparallelism 
shows functional dissimilarity of the 
two preparations compared and thus 
invalidates an estimate of relative 
potency. It is impossible to conclude 
that any level of nonparallelism is 
trivial with respect to potential 
clinical consequences without 
understanding the origin of that 
nonparalellism.

A simplistic analogy from 
physicochemical assays might be the 
detection of a small difference (a 
fraction of a percent) in molecular 
weights of two batches of a 
biopharmaceutical, a difference that 
may be apparent only on 
improvement or change of the 
analytical technique. The difference 
could be indicative of an amino acid 
mutation, and the change of one 
amino acid may be without clinical 
consequence — or it may 
fundamentally change the biological 
properties of a molecule (6). So the 
molecular weight difference cannot 
be dismissed as trivial simply on the 
basis of its magnitude.

A situation that can arise is that of 
early batches of product that prove 
satisfactory in the clinic and are 
tested by an imprecise assay with no 
apparent nonparallelism between test 
and reference — but later batches 
show non-parallelism when tested in 
a more precise assay. Rather than 
simply attributing this emerging 
nonparallelism to the improved 
precision of the assay, archived 
samples of the early batches should be 
tested in that improved assay if 
possible to demonstrate comparability 
of the clinical trial and later batches 
of product. It may then prove 
necessary to reconsider the suitability 
of the reference standard.

If statistically significant 
nonparallelism is evident for 
preparations known to satisfy the 

Figure 1:  Transformed dose–response curves 
for a test product and a reference standard 
showing functional similarity in a bioassay; 
the curves have the same mathematical form. 
Displacement between the curves along the 
concentration axis is constant and is a 
measure of relative potency. 
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assumption of similarity — for 
example, aliquots of the same sample 
— then assay design and procedures 
must be examined for violations of 
the assumptions underlying the 
statistical analysis. In such cases, a 
modified assay design or more 
suitable analysis may be appropriate. 
This is recognized in most 
pharmacopoeial monographs by the 
allowance of alternative justified and 
validated statistical methods.

Bioassay Design and Assumptions 
Underlying Statistical Analysis

When considering the use of 
bioassays, it is important to 
distinguish between the fundamental 
validity of an assay and the validity of 
the mathematical and statistical 
treatment of the resulting data. If a 
fundamental assumption is not true 
for a given assay, then data obtained 
cannot lead to a correct result no 

matter what arithmetical processes 
are applied. If, however, one or more 
of the assumptions for statistical 
validity is untrue, then it may be 
possible to amend the assay design 
and/or the method of computation. 
For any final statement of potency 
and its limits to be valid, both 
fundamental and statistical validity 
are required (7). 

A number of data-related 
assumptions underlie all statistical 
methods. The design of a bioassay 
must meet these assumptions as 
closely as possible or try to 
compensate for factors that may 
violate them. One assumption on 
which the F-test is based is that 
experimental units are an 
independent random selection from a 
defined population and that 
responses are determined completely 
by dose. In reality, this is rarely the 
case. As an example, consider a 
common assay design in which  
serial dilutions of samples are  
loaded onto 96-well cell culture 
plates. Wells in the corners, on the 
edges, and in the center of one plate 
differ in their environments, and 
separate plates may be subject to 
slightly different conditions, any of 
which may affect responses in those 
units (wells and plates).

Figure 2 shows an example assay 
readout from cells cultured in 96-well 
plates in which each well was treated 
identically. For visual impact, the 
optical density readout is ranked into 
four grades based on the magnitude 
of response. It is obvious that the 
cells in each well, although treated 
identically, do not show an identical 
response. The distribution of 
responses within a plate is not 
random, and the two plates show a 
different distribution pattern. 
Although a good assay design would 
seek to reduce this variability and 
compensate for those factors that 
could not be eliminated, it is not easy 
to achieve such an ideal in practice. 
For some factors, block or other 
structured designs can be considered 
(8), but they are not always 
practicable or feasible. 

In many 96-well plate assays, 
samples and doses are not distributed 

completely randomly. Thus, as can be 
seen from Figure 2, bias can be 
introduced to the measured dose–
response relationship. A completely 
random distribution of samples, on 
the other hand, might lead to a 
greater delay between dosing the first 
and last wells, thus introducing yet 
another factor that can affect the 
measured response.

Serial dilution of samples is a 
common practice (especially in 
96-well plate assays) that is rapid and 
logistically simple, thus reducing 
operator error, and economical in its 
use of sample material. However, it 
can lead to an error being propagated 
systematically through the dose series 
of a sample, causing nonparallelism 
of dose–response curves because the 
responses at any dilution are not 
independent, but rather depend on 
the preceding dilutions. Figure 3 
shows the divergence of three 
nominally identical dilution curves of 
the same material. Such divergence 
may be the result of propagated 
dilution errors causing nonparallel 
dose–response curves. Alternatively, 
there might be row effects that 
become apparent only at higher 
response levels, or there could be 
some other unrecognized source of 
bias.

Various features of experimental 
design can reduce such bias or permit 
an assessment of its effect. One 
simple method of direct assessment is 
treatment of identical preparations as 
independent samples and measuring 
the nonparallelism of their dose– 
response lines (and their relative 
potency, which should equal 1). 
Blinding operators to the identity of 
the samples removes further possible 
sources of bias so coded or hidden 
replicates are included in some assay 
designs.

In some bioassays, known 
differences between reference 
standard and test preparation in 
excipient composition or slight 
molecular modifications of the 
biological material affect the 
response, leading to a degree of 
nonparallelism. Such violations of the 
fundamental principle of functional 
similarity do not constitute a 

Figure 2:  In this uniformity test, each well of 
two 96-well cell culture plates was seeded 
with cells and treated identically to the 
others. The optical readout for each plate has 
been ranked into four grades and shaded 
according to magnitude for visual impact. 
Darker shading indicates larger values, so 
solid squares indicate the 25% of wells with 
the largest responses, and open squares 
indicate the 25% of wells with the smallest 
responses. Although treated identically, the 
cells of each well do not show an identical 
response. The distribution of responses within 
a plate is not random, and the two plates 
show a different distribution pattern.
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statistical problem, so there should be 
no attempt to apply a statistical 
adjustment to disguise them. When 
nonparallelism arises because of the 
formulation, it may be possible to 
adjust assay conditions to obtain 
parallel dose–response curves — by, 
for example, adding components to 
the test or reference solutions that 
reduce differences in their excipient 
composition. An example of dealing 
with nonparallelism arising because 
of dissimilarity of the materials is 
seen in the measurement of serum 
antibody concentrations in a range of 
samples for which results depend on 
the dose range of the sample, and 
different assay systems may give 
different results (5). A possible 
violation of the fundamental 
assumption of parallelism is 
recognized, and the extent of such 
violation may even be quantified. For 
such a situation, sample dilutions 
covering a broad dose and response 
range can be used to derive a 
“representative” value of relative 
potency (5).

If no such suitable adjustment of 
the assay system is possible, then the 
appropriate action — which would 
have to be agreed upon with a 
regulatory authority and supported by 
clinical or other data — may be to 
accept the nonparallelism until, for 
example, more suitable reference 
standards or assay systems can be 
developed (9).

Statistical Alternatives  
to the F-test

Specific experimental situations may 
require particular statistical 
approaches. This was recognized by 
R.A. Fisher in discussing the validity 
of estimates of error used in 
significance tests (10). He noted the 
problem that “standardized methods 
of statistical analysis have been taken 
over ready-made from a mathematical 
theory, into which questions of 
experimental detail do not explicitly 
enter”. It is frequently the case that 
estimates of residual error calculated 
for individual biological assays do not 
satisfy the statistical assumptions 
required for a classic F-test. This 
issue is explicitly recognized in the 

European Pharmacopoeia (EP), which 
suggests ways to overcome the 
problem. Alternative approaches 
should be adopted when they are 
appropriate and validated for a 
specific experimental situation.

Various alternative approaches 
have been suggested for specific 
situations. Modifications of the 
acceptance criteria for classic 
statistical tests form the basis for 
some. For example, Story et al. 
propose a multiplication factor for the 
F value and present empirical data for 
it in the context of a particular assay 
(11). In some circumstances, an 
estimate of the residual error based 
on historical or validation data may 
be used, as suggested by the EP.  
This requires empirical data and 
ongoing validation of the estimate 
used. Other alternative methods are 
based on consideration of the dilution 
profile of a test sample, and 
acceptability of potency estimates is 
assessed using the consistency and 
magnitude of changes in the 
estimates of potency for a dilution 
series of the test sample (5, 12).

An approach recently suggested is 
based on equivalence testing (3, 4). It 
proposes that the hypothesis of the 
classic test is “f lawed,” and bases its 
alternative approach on showing that 
two lines are “sufficiently parallel.” 
The problem Hauck et al. identify is 
that “perfectly acceptable assay results 
may fail due to good precision” and 

that “obviously faulty assay results 
may pass due to poor precision” as 
illustrated in Figure 3 of Reference 3. 
Limits are thus set for the acceptable 
magnitude of the difference in slopes 
and for the precision associated with 
that difference. Although the F-test 
and this equivalence test lead to the 
same conclusion in many cases 
(Figure 4, example A95), they can in 
certain cases lead to different 
conclusions concerning parallelism 
and hence functional similarity of 
biological preparations (Figure 4, 
examples B95 and B99).

Under the equivalence-testing 
approach, it is proposed that two 
lines with slopes that differ 
significantly from one another but for 
which the difference is “statistically 
less” than some specified value 
should be described as “equivalent” 
(Figure 4, example B95). This 
distinguishes the equivalence 
approach from the classic F-test 
approach. The approach has proved 
useful in some circumstances. For 
example, in comparisons of two 
different clinical treatments or drugs, 
it may be required that a statistical 
test have the power to detect 
differences of a specified (clinically 
important) magnitude, and it may be 
further considered that the cost of 
changing treatments is not justified 
unless the difference in treatments is 
“sufficiently large.” The definitions of 
large or clinically important 
differences must be defined in the 
context of a particular biological or 
medical situation. A crucial question 
for this approach is then how the 
criterion of sufficiently parallel might 
be defined for a biological assay — 
and more critically, what the 
implications might be of any proven 
deviations from parallelism even 
though such differences fall within 
some specified interval.

Again, the word difference is used 
in its general sense here. However, 
to apply the equivalence-testing 
approach, it is necessary to select 
and define some measure of the 
difference in slopes (e.g., the 
absolute numerical difference of 
slopes or the deviation of the ratio of 
slopes from a value of 1.0). It is then 

Figure 3:  Three nominally identical serial 
dilution curves in adjacent rows in a 96-well 
plate show divergence of dose–response 
curves. Open diamonds denote responses 
from row B, solid diamonds responses from 
row C, and open triangles responses from row 
D. This divergence may be attributed to 
propagation of dilution errors through the 
series and/or positional effects on the plate, 
resulting in nonparallel dose–response curves.
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necessary to specify how a 
confidence interval for the selected 
measure of difference can be 
calculated.

A situation where obviously faulty 
assay results may pass due to poor 
precision is unacceptable. It must be 
noted that low assay precision is an 
issue distinct from assay validity, 
however, and possible consequences 
are not limited to the failure to detect 
nonparallelism. Various criteria will 
determine the level of assay precision 
required in each particular case, and 
it may be necessary to take measures 
to improve assay precision through 
modification of experimental 
procedures.

Discussion

Different approaches to assessing 
nonparallelism may be appropriate in 
the context of specific experimental 
situations. In many cases, the classic 
F-test can serve as a starting point for 
assessment of similarity, and it may 
be possible to evaluate the extent to 
which the underlying statistical 
assumptions for this test are satisfied. 
Application of an appropriate method 
and selection of appropriate criteria 
for assessment of parallelism depend 
on understanding the relevant 
properties of the biological test 
material, reference preparation, and 
assay system, as well as the purposes 
for which the result is required. 
Historical empirical data are often 
key to determining the approach, and 
wherever empirical approaches are 
considered suitable, they should be 
included in assay validation.

Sometimes practical and feasible 
assay designs may not meet the 
statistical assumptions required for 
the classic analysis of variance. In 
such situations, it may be possible to 
determine the impact of an assay 
design on the numerical statistical 
analysis. Underestimation of the 
residual error frequently results, with 
the consequence that an F value 
determined in the usual way is too 
large and hence appears to be 
significant. Assessment of deviations 
from parallelism (and hence the 
significance level) that may be 
expected on the basis of the assay 

design can be achieved by analyzing 
coded duplicate samples , as used for 
example in (13). In such situations, an 
equivalence-testing approach might 
also be appropriate. The EP indicates 
possible approaches to use when an 
assay design does not permit valid 
estimation of the relevant residual 
error from individual assays. 

All these approaches are 
essentially empirical and depend on 
knowing the properties of the 
biological preparations and assay 
systems as well as supporting 
historical data. Although broad 

guidelines may be suggested, each 
situation and assay design is unique 
and must be individually evaluated. 
Moreover, all changes in 
experimental conditions or assay 
design would require revalidation.

Approaches to analyzing 
nonlinear dose–response 
relationships are more 
mathematically and statistically 
complex. The effects of the 
mathematical formulation selected 
— and of the constraints placed on 
the various parameters — must be 
evaluated (5, 14). The need is 

Figure 4:  Contrasting F-test and equivalence testing in assessing parallelism; these examples 
illustrate possible differences in outcome when slopes are examined by the two methods. (Note: 
Although 95% intervals are typically used, other intervals may be used, e.g., 99%. The confidence 
interval width to be used with either approach would need to be specified.)

A95

B95 nonparallel

Di�erence in Slope
0 +−

Di�erence in Slope
0− +

Equal Slopes Equivalence Limit Equivalence Limit
F-Test Equivalence Test

A95 equivalent

B95 equivalent

B99 B99

Table 1:  Data for Figure 4, comparing F-test and equivalence testing, show levels set for confidence 
intervals of slope differences, results (intervals for slope differences), null hypotheses, and conclusions

F-Test
Confidence 
Interval 
Level

Confidence  
Interval Result

Null Hypothesis:  
Slopes Are Equal Conclusion

A95 95% Includes 0 (slopes are equal) Not rejected Slopes do not 
differ significantly.

B95 95% Does not include 0 (slopes are 
not equal)

Rejected Slopes differ 
significantly.

B99 99% Includes 0 (slopes are equal) Not rejected Slopes do not 
differ significantly.

Equivalence Test
Confidence 
Interval 
Level

Confidence  
Interval Result

Null Hypothesis: 
Slopes Differ By 
>Equivalence Limit Conclusion

A95 95% Completely within specified 
equivalence limits

Rejected Slopes are 
equivalent.

B95 95% Completely within specified 
equivalence limits

Rejected Slopes are 
equivalent.

B99 99% Not completely within 
specified equivalence limits

Not rejected Slopes are not 
shown to be 
equivalent.
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recognized for fundamental validity 
(for exact similarity of the dose– 
response relationships), although 
how to ensure that is less obvious. 
For example, the order in which 
multiple parameters are compared 
must be considered as well as the 
actions to be taken if one or more 
parameters differ significantly 
between the two curves.

Complete characterization of the 
dose–response relationship may be of 
primary importance when 
characterizing the biological material. 
However, for routine batch release of 
biologicals with well-characterized 
dose–response relationships, assay 
designs based on the linear part of 
the dose–response relationship may 
prove appropriate. This is particularly 
the case for animal-based assays, 
which commonly involve ethical and 
legal constraints on the number of 
animals used, thus limiting the 
number of data points that can be 
obtained. For any type of bioassay, 
cost or logistical considerations may 
limit the number of data points. In 
such cases, it frequently proves more 
useful to maximize the number of 
doses and the replicates of each dose 
over the linear part of the curve 
rather than attempting to span a 
complete dose–response curve. For 
the approximately linear part of the 
curve, a classic parallel line analysis 
can then be used.

The hypothesis tested by the 
classic analysis of variance for assays 
following the linear parallel-line 
model is based on the essential 
fundamental assumption of biological 
similarity. It is thus appropriate for 
assessing the validity of assays used 
to estimate the relative potency of 
identical preparations or those that 
behave identically in the particular 
assay system (and thus are 
functionally identical).

If the preparations are not 
functionally identical, then increased 
assay precision (subject to statistical 
validity of an estimate of precision) 
may indeed lead to increased 
rejection of assays. Improved 
resolution resulting from greater 
precision is always desirable. 
Improved precision will not resolve 

two materials that really are 
identical, but it will reveal previously 
unresolved differences, offering the 
possibility of exploring potential 
clinical significance of a newly 
detectable functional dissimilarity.

Failure to satisfy the classic “test 
for parallelism” (demonstration of 
significant deviations from 
parallelism) is thus a clear indication 
of an invalid estimate of relative 
potency. This invalidity may result 
from various causes, and it is 
important to recognize these causes 
and see that they are not obscured by 
the approaches used to assess 
nonparallelism. Such recognition can 
lead to alternative interpretations of 
the analysis or to alternative methods 
of analysis — and hence to estimates 
of potency that can be considered 
valid in a given situation.

It is not possible to “test for 
parallelism” because a hypothesis of 
exact equality can never be proven. 
Moreover, there is no single correct 
way to test for nonparallelism. As 
discussed by Fisher, no standardized 
method of analysis should be taken 
ready-made (10). It is important that 
details of each experimental situation 
are explicitly included in the analysis 
and interpretation of resulting data. 
In the case of bioassays, this includes 
considering the nature of the 
materials compared and the purpose 
of that comparison in addition to the 
assay design and statistical/
mathematical characteristics of the 
biological response data. In no case 
can the requirement for fundamental 
validity of an assay and similarity of 
dose– response curves be ignored.
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