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Modeling of Biotherapeutic Modeling of Biotherapeutic 
Manufacturing Processes Manufacturing Processes 
Notes from a November 2023 Webinar

Josh Abbott with Cleo Kontoravdi and Dong-Yup Lee

FOCUS ON...         MANUFACTURING

T he International 
Biomanufacturing Network 
(IBioNe) is a group of 
organizations that is dedicated to 

spreading knowledge about 
biomanufacturing. IBioNe is sponsored 
by the US National Science Foundation 
(NSF Award# 2114716: principal 
investigator Michael Betenbaugh and 
co-principal investigator Seongkyu 
Yoon) and serves other NSF-sponsored 
organizations, including the Advanced 
Mammalian Biomanufacturing 
Innovation Center (AMBIC) and the 
Membrane Science Engineering & 
Technology Center. According to the 
IBioNe website, the network seeks to 
serve as “a catalyst for technology 
innovation in biomanufacturing with 
increased biomanufacturing training 
and workforce development 
opportunities globally, accelerating 
discoveries and developments of 
lifesaving drugs and vaccines.” By 
sharing information and training 
industry professionals around the 
world, IBioNe seeks to help make life-
saving treatments available and 
affordable.

In November 2023, Seongkyu Yoon 
(co-PI of IBioNe, and chair of workforce 
development committee) hosted a 
webinar featuring Cleo Kontoravdi 
(researcher from Imperial College in 
London, UK) and Dong-Yup Lee 
(associate professor of the School of 
Chemical Engineering at Sungkyunkwan 
University), who Betenbaugh introduced 
as experts in mathematical modeling of 
biotherapeutic production processes (2). 
Kontoravdi began by discussing 
modeling of cell-culture processes.

Modeling Upstream Processes
According to Kontoravdi, modeling is 
useful even during the first stages of 
process development. It can aid both the 
consolidation of multiomics data sets 
and their systematic analysis, which 
can lead to better experiment design.

Modeling often is used to control a 
cell-culture process and ensure 
production of a specific range of glycan 
structures. Protein glycosylation takes 
place in the endoplasmic reticulum and 
the Golgi apparatus of a mammalian 
cell. Such posttranslational 
modifications rely on the right 
concentrations of enzymes as well as 
the transport proteins that bring in 
substrates produced metabolically in 
cytosol. Protein synthesis depends both 
on the nutrients that scientists provide 
to a cell and on central carbon 
metabolism and the energy that process 
generates. 

Glycosylation is influenced by 
metabolic function, enzyme regulation, 
and an intricate network of reactions 
occurring in cellular organelles. At the 

same time, recombinant proteins 
compete for resources with host-cell 
proteins (HCPs), and the loss of 
nutrients can generate an array of 
glycans. To control an overall process, 
biomanufacturers need to account for 
the many variables that can affect 
glycosylation, which is difficult to 
manage exclusively through 
experimentation. That is where 
modeling comes in. 

Modeling enables Kontoravdi’s team 
to describe mathematically how process 
conditions affect metabolism and 
substrate availability. Process 
engineers can translate such 
information into predictions about 
what is happening inside a Golgi 
apparatus and how the rate of protein 
production might affect glycan 
maturity.

From there, Kontoravdi’s team can 
assess whether a process generated an 
appropriate glycomic profile or requires 
further optimization. Such assessments 
can be done partially in silico using 
insights from the modeling. The team 
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can also account for heterogeneities at 
the population level and observe them 
inside a bioreactor. At pilot and 
production scales, for example, 
heterogeneity might affect the 
availability of substrates and dissolved 
oxygen and how such factors affect cell 
metabolism and product quality.

It’s helpful to optimize cell-culture 
behavior using bioreactor-environment 
models that can be used at a small or 
large scale. Large-scale models enable 
scientists to develop computational fluid 
dynamics (CFD) packages that describe 
events happening throughout a large-
scale bioreactor. Then, analysts can 
decide whether cells are behaving as a 
homogeneous population, which is 
called an unsegregated biophase. If the 
cell population is heterogeneous, it can 
be segregated into different 
subpopulations.

Biomanufacturers also can use 
models to decide if they should 
introduce structural-biology principles 
— e.g., by observing the organization 
and transport of different organelles. 
Analysts also can observe cells under a 
black-box model, focusing on only the 
materials flowing in and out of cells 
rather than their internal components. 
Multiple types of models can be used to 
fit different needs. For instance, 
analysts can create combinations of 
segregated or unsegregated models 
based on structured or unstructured 
data. The most complex models are used 
for heterogeneous cell populations and 
can describe intracellular components 
and organelles. Forming and validating 
such a model requires an abundance of 
data gathered under different 
conditions. That can be a demanding 
process.

Kontoravdi said that her team 
sometimes observes random effects in 
biological systems, meaning that 
deterministic models are not entirely 
appropriate. Instead, the team considers 
stochastic effects, which add to a 
model’s complexity in providing a high-
fidelity representation of a system. 

Models can be dynamic and able to 
describe what a population does across 
an entire culture or production run. But 
they can also be static and describe a 
cell’s behavior only at a particular time. 
Models can be designed to describe 

single cells or entire populations. They 
can be black boxes as described above, 
or they can enable a developer to 
observe an entire culture environment. 
They can describe homogeneous or 
heterogeneous populations and consider 
the homo- or heterogeneity of an 
extracellular environment. If an 
extracellular environment is 
homogeneous, CFD could be 
incorporated to account for 
heterogeneities.

Building a Model
Kontoravdi said that before developing 
a model, it is important to decide why 
you are building it and how you will use 
it. A segregated and structured model is 
appropriate for consolidating multiomics 
data sets and for analyzing cellular 
behavior. 

But when performing on-line control 
in some bioprocesses, you might prefer 
a simple model that is unsegregated and 
unstructured. Consider the data that are 
available and whether they need 
augmentation to form a reliable model. 
Performing experiments without 
consideration for data curation may 
result in data sets of poor quality.

In dynamic modeling, 
biomanufacturers use system excitation 
that enables them to tease out the 
dynamics and individual contributions 
of various process inputs. Modelers 
must be included in experiment design. 
It’s important to understand what data 
can be measured and how frequently 
that can happen.

Models can be either mechanistic or 
data-driven. Mechanistic models 
hypothesize a relationship among 
variables in a given data set, yielding 
differential equations that can be used to 
predict process outcomes. Such models 
can be expanded to include critical 
process parameters (CPPs) and critical 
quality attributes (CQAs). They typically 
require extensive experimentation and 
intracellular measurements to validate 
the results, and the availability of a time-
course data set is essential for dynamic 
representation. Mechanistic models are 
useful for quantifying trade-offs and 
informing operating strategies. 
Unfortunately, they can be difficult to 
parameterize, are typically nonlinear, 
and are expensive to develop. 

Data-driven models provide an 
alternative. Many complex machine-
learning (ML) algorithms are available, 
but their utility relies upon the size of a 
given dataset. Such models enable 
developers to gain understanding of 
correlations, and although they allow 
for interpolation, they are not reliable 
for extrapolation. On the positive side, 
little biological expertise is needed to 
develop data-driven models quickly, and 
they are useful for integrating on-line 
measurements. For example, data-
driven modeling is essential when 
transforming on-line Raman-
spectroscopy data into feedback 
measurements for automated process 
control. 

Mechanistic-Modeling 
Approaches: Within the mechanistic 
modeling domain, biomanufacturers 
typically use either a kinetic or 
stoichiometric approach. Kinetic models 
are dynamic and often treat cells as 
black boxes. However, developers can 
incorporate known measurements. Such 
models are specific to the system at 
hand.

Stoichiometric models are generically 
applicable sets of equations that can be 
customized given the right data. In 
theory, they can integrate nearly 
limitless amounts of biological and 
process data and can be expanded 
beyond metabolic functions, which is 
usually the first point for which they 
are developed. Stoichiometric models 
can be used to create custom cell-line 
models by integrating information 
about a product protein and 
manufacturing process, usually in 
combination with kinetic or data-driven 
components.

Hybrid models are a third option that 
combine the best of both worlds and 
can augment the capabilities of kinetic 
models, which assume that the 
expression of enzymes and transfer 
proteins is constant. But that is not the 

HYBRID MODELS 
combine the best of 
both worlds and can 
augment the capabilities 
of kinetic models. 
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case throughout a manufacturing run. 
It is possible to incorporate ML 
components to use data-driven 
methodology that accounts for enzyme 
regulation inside a Golgi apparatus. 

Advantages of a Hybrid Approach
Kontoravdi’s team conducted seven 
experiments with different feeding 
strategies using galactose and uridine. 
They tried to influence the glycosylation 
and galactosylation of a monoclonal 
antibody (mAb), and when analyzing 
their findings, they noticed a large 
discrepancy between the predicted and 
experimental results.

Kontaravdi explained that such 
discrepancies can occur when using a 
purely kinetic approach because the 
model will not account for unmeasured 
events. Although her team understood 
what was happening with their 
intracellular nucleotide sugars, they 
didn’t know what was happening with 
their enzyme levels. But because they 
knew the outputs, the team was able to 
build a neural network to account for 
enzymatic activity, and they slotted the 
ML component into a kinetic model. That 
hybrid model performed better because it 
accounted for genetic-regulation events 
that otherwise could not be accounted 
for, and it reduced the mean absolute 
error by about 30% when compared with 
the initial kinetic model. That combined 
approach can make reliable models to 
solve intricate problems. 

Biomanufacturers can use genome-
scale models to engineer better cells. 
Studies have helped researchers identify 
the most energetically costly HCPs, 
which were knocked out to make a 
recombinant product and create a 
cleaner feedstock. They also can be used 
for process engineering.

During a successful cell-line 
experiment, Kontoravdi’s group used a 
genome-scale model and historical data 
on amino-acid use to invent a strategy 
for optimizing cell-specific productivity. 
The team later refined the model and 
selected scenarios that can be 
implemented in a laboratory to make 
higher-producing clones. Most scenarios 
contained a reasonable number of 
genetic interventions for abundant 
amino-acid creation and suppression of 
biomass growth. 

Kontoravdi explained a strategy that 
her team used to create a leucine 
abundance within a cell line by 
knocking out the gene for branched-
chain amino-acid aminotransaminase 1 
(BCAT1) and by overexpressing the AACS 
and AACS2 genes. The team also lowered 
the bioreactor temperature to reduce cell 
growth. That genetically engineered cell 
line achieved bioreactor titers of 
>2.6 g/L, which was higher than yields 
achieved in their previous experiments. 
The line also maintained high specific 
productivity through to the end of the 
culture.

ESACT Course on Metabolic  
and Bioprocess Modeling
Lee described a European Society for 
Animal Cell Technology (ESACT) course 
on metabolic and process modeling for 
animal cells. IBioNe first ran the course 
in October 2023 and plans to do so 
again in Fall 2024. Lee said that the 
course covered many considerations for 
model building — e.g., CPPs, process 
environment, and media composition — 
and discussed how those affect cellular 
behavior and productivity. The course 
also details uses of and differences 
between stoichiometric and kinetic 
models and how to combine their 
strengths into a hybrid model. Further 
course topics include CFD for cell 
bioreactors, chemometrics, and their use 
to support integration of process 
analytical technologies.

Ongoing Community Research
Lee concluded by explaining ongoing 
efforts from his team and global 
research groups to build a genome-scale 
model, which he hopes will be available 
in 2024. He said that an initial goal is to 
model mammalian cell lines, such as 

human embryonic kidney (HEK) and 
other animal cells, which could be used 
for adenoassociated virus (AAV) 
production.

To make the model viable, the 
researchers first must overcome 
difficulties establishing reliability. 
Although their prototype provides an 
understanding of what is happening 
inside a cell, Lee’s team seeks to further 
improve cellular behavior and model 
predictability. They have improved 
quality by adding regulatory and kinetic 
data.

Of course, a model’s utility is its most 
important characteristic. To increase 
that, Lee’s team has worked to 
demonstrate how models can be used to 
develop basal media. They built a 
workflow that enabled them to identify 
a bottleneck during cell culture, then 
used that  to adjust media components. 

Technological advances open the 
possibility that such models could be 
applied for cell-line engineering and 
development. Techniques such as 
genome editing are useful tools, but 
researchers still need to identify the 
right genetic targets. Similarly, Lee’s 
team can use their currently available 
model and multiomics profiling data to 
identify engineering targets. 
Furthermore, modern virtual tools can 
be incorporated to predict and simulate 
actual systems and their behaviors.
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