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P otency is a critical quality 
attribute to support 
development and release of 
biopharmaceutical products. 

Researchers assess most protein-drug 
potencies using biological assays (such 
as cell-based assays), which mimic a 
product’s known mechanism of action 
or binding assays (if the only known 
mechanism of action is a drug binding 
to its target or if a drug is in early 
phases development). Potency denotes 
an important feature of complex 
biologics: their biological activity 
produced as a direct result of the 
molecule’s tertiary/quaternary 
structure.

Biological assays have a number of 
potential applications. These include 
drug release, stability testing, standard 
and critical reagents qualification, 
characterization of process 
intermediates, formulation, product 

contaminants/degradation, and 
support for production (1). So the 
potency-test requirements and assay 
format depend on a given product’s 
intended use. Therefore, it is crucial to 
correctly evaluate protein drugs’ assay 
characteristics and ensure their fitness 
for purpose. 

Binding and cell-based assays are 
more variable than physicochemical 
analytical techniques (2, 3). For 
example, biological material (e.g., 
cells), critical reagents (e.g., biological 
media, conjugated antibodies, reading 
substrates) and other unidentified or 
uncontrollable sources of variability 
can affect the response of an assay 
system. Because of the inherent 
variability of biological assays, potency 
is not an absolute measure. Rather, it 
is calculated by comparing the test 
results with a reference standard 
(relative potency, RP). 

The comparison methodology is 
based on an assumption that tests and 
standards behave similarly in a bioassay 
because they contain the same effective 
analyte. Consequently, test and 
standard dose–response function curves 
should share common functional 
parameters and differ only in 
horizontal displacement. That key 
assumption is also termed as similarity, 
and it implies the presence of statistical 
similarity, a measure of how similar 
two sets of data are to each other. 

Statistical similarity assesses the 
parallelism of standard and test 
samples in parallel-line or 
parallel‑curve models. The condition 
of similarity is thus essential for 
relative potency determination. Failure 
to assess parallelism generates a 
meaningless relative potency that 
cannot be reported or interpreted (4). 

Classical validation approaches — 
such as described in ICH Q2(R1) and 
FDA guidelines — are designed for 
quantitative and qualitative 
physicochemical analytical methods 
and are not appropriate for relative 
potency bioassays. The US 
Pharmacopeial Convention recently 
revised chapter <111> following the 
need to update those guidelines with a 
more appropriate approach for relative 
potency determination (5). Three new 
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chapters are now available specifically 
related to biological assays: <1032> 
Design and Development of Biological 
Assays, <1033> Biological Assay 
Validation, and <1034> Analysis of 
Biological Assays (1, 6, 7). In addition 
to describing the relative potency 
calculation approach, those new 
guidelines propose the use of 
equivalence testing to define 
acceptance criteria. By contrast with 
the classical hypothesis (difference) 
approach, equivalence testing does not 
penalize too‑precise results (8, 9). 

The USP Statistics Expert 
Committee published an article in 
2013 to stimulate revision of a 
guidance for the use of statistical 
methods in analytical procedures 
validations (10). The validation 
principles included are in accordance 
with USP <1034> principles. USP also 
proposes a new general information 
chapter <1210> Statistical Tools for 
Method Validation (11), which provides 
statistical methods for analytical 
procedures validation. The purpose of 
the stimulus article and chapter <1210> 
is to provide statistical tools (e.g., 
tolerance interval). 

In assessing whether an analytical 
procedure is fit for its intended 
purpose, it is important to understand 
the relationship between bias and 
precision. The degree to which bias 
affects the usefulness of an analytical 
procedure depends in part on 
precision. A total-error tolerance 
interval summarizes the relationship 
of bias and precision in one unique 
criterion that can be represented by a 
simple graph: the total error profile.

Here we describe a case study on 
the implementation of USP <1032> and 
<1033> for the validation of a binding 
enzyme-linked immunosorbent assay 
(ELISA) to measure binding activity of 
a phase 1 antibody drug. We applied 
two curve‑fitting models (parallel line 
and parallel curve) on the same dataset 
and set equivalence approaches to test 
similarity (or suitability) for each 
model. We validated this assay based 
on USP guidance and total-error 
approach for both models and 
compared results.

A Three-Step Process

Implementing equivalence testing for 
assessing similarity takes three steps:

• Choose the fitting model and 
corresponding measure of 
nonsimilarity.

• Define an equivalence interval for 
the measure of nonsimilarity.

• Determine whether the measure 
of nonsimilarity is within the 
equivalence interval.

Choose the Fitting Model and  
Measure of Nonsimilarity 
Several characteristics differentiate 
biological assays from physicochemical 
methods (12). One key difference is 
the nonlinear relationship between 
response and analyte concentration. 
Binding assay response–function 
curves result from interactions 
between analytes and their target 
antibodies and/or other binding 
reagents. The response could be 
directly or indirectly proportional to 
analyte concentration, depending on 
whether the assay is competitive or 
noncompetitive. Such a 
log(concentration)–response 
relationship generates nonlinear 
response of sigmoidal shape. The 
model commonly used for 
curve‑fitting analysis of sigmoidal 
symmetric curves is the 
four‑parameter logistic (4-PL) 
regression model shown as Equation 
1. Here, Y is the response, A is the 
response at zero analyte concentration, 
D is the response at infinite analyte 
concentration, C is the inflection 
point — also known as EC50 ((A + 
D) ÷ 2) — B is the slope that defines 
the steepness of the curve, and x is the 
analyte log(concentration). 

A 4-PL function requires a 
sufficient number of concentrations or 
dilutions to fit the model. One 

Figure 1:  Selected linear range; linear portion of a nonlinear dose-response curve
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Figure 2:  Unconstraint (left) and constraint (right) model for the calculation of RSSEnonPar
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Equations: 

Equation 1

Equation 2

Equation 3

Equation 4

Equation 5

Equation 6

Y = (A – D)
x(1 + C

+ D
( ) )

B

(RSSEnonPar) = (RSSEConstraint) – (RSSEUnconstraint)

RP = 100 ×  e b
(aT – aS)

RP = 100 × EC50s( )EC50T

IP(%GSD) = 100 × (e 
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concentration is commonly used (or 
two would be better) to support each 
asymptote (parameters A and D) and 
at least three (or better, four) 
concentration points in the linear part 
of the curve. The linear part of a 4-PL 
function often is defined as 
concentrations near the center of the 
response region. B parameter (slope) 
should be ∼1, meaning that the 
concentration points are well 
distributed spatially. 

Some biological assays assume that 
the concentration–response function 
approximates a straight line over a 
limited range of concentrations. In 
this case, a linear regression model can 
be used to fit the data generated. As 
stated above, one characteristic of the 
bioassay is that the log(dose) responses 
are not linear. A common strategy to 
overcome that aspect is to identify and 
select the approximately linear region 
of the full response curve. This region 
is often defined as the range between 
10% and 90% of a response when a 
4-PL model is applied and the data 
are rescaled to the asymptotes. 

The mathematics are 
straightforward for a linear dose–
response function. Parallelism can be 
determined using parameter 
comparison methods (e.g., difference 
of slopes or ratio of slopes). For the 
parallel-curve model, parallelism 
assessment should include 

consideration of the entire full dose–
response curve. Two approaches can 
be found in the literature. We evaluate 
each dose–response parameter (slope, 
upper, and lower asymptotes) 
independently or with a composite 
measure (e.g., residual-sum-of-
squared-errors, RSSE) (13). 

Parallel-Line Model: We defined 
the linear region of dose–response 
curves as the log concentration points 
that fell between 10% and 90% of the 
range between the lower and upper 
4-PL asymptote (Figure 1). We set a 
criterion of having at least four points 
in the selected linear range to accept 
the dose–response curve and to 
proceed with data analysis. In 
addition, we assessed our linearity 
assumption by checking linearity of 
the selected range through the 
quadratic coefficient of the standard 
and sample dose–response curves. In 
case of perfect linearity, the quadratic 
coefficients should be equal to zero.

We assessed our similarity 
assumption by checking parallelism 
through the slope ratios for each 
couple standard/sample dose‑response 
curve. For perfect parallelism, the 
slope ratio should be equal to one. 

Parallel-Curve Model: In this case 
study, we used a composite measure to 
assess similarity. A composite measure 
considers all parameters (slope, upper 
and lower asymptotes) together in a 

single measure called nonparallelism 
residual sum of squared errors 
(RSSEnonPar) (13). It is a direct measure 
of the amount of nonparallelism 
between two curves, and it ranges 
from zero (perfect parallelism) to 
infinity (less and less parallel). 
RSSEnonPar measures the difference 
between the residual variability when 
the parameters of two curves (slope 
and asymptotes) are constrained to be 
equal (constraint model) and the 
residual variability when the 
parameters (slope and asymptotes) are 
different for each curve (unconstraint 
model) (Figure 2), as shown in 
Equation 2.

Define an Equivalence Interval  
to Measure Nonsimilarity

Similarity is the key assumption to be 
fulfilled before calculating relative 
potency. It implies that standard and 
test-sample dose–response curves 
share common functional parameters. 
When this condition is met, the 
horizontal shift (along the log 
concentration axis) between the 
standard and test sample is the 
measure of relative potency. 

USP strongly recommends 
implementation of equivalence testing 
instead of difference tests. An 
equivalence approach for similarity 
assesses whether the measure of 
nonsimilarity is contained within 
specified equivalence bounds. So it 
will not allow samples with 
nonsimilarity measures outside the 
equivalence boundaries to be declared 
as similar. An equivalence approach 
offers the advantage of not penalizing 
too-precise (“good”) results (producer’s 
risks) and of rejecting (“bad”) results 
with decreased replication or precision 
(consumer’s risk). The big challenge is 
to define appropriate equivalence 
limits (acceptance criteria) for 
similarity measures that will allow 
accepting good response–function 
curves and rejecting aberrant ones. 

Four different approaches are 
described in USP chapter <1032> to 
support the definition of equivalence 
limits (Figure 3). The first three 
approaches are based on compiled 
historical data that compare a standard 
to itself. The advantage of using 

Table 1:  Equivalence margins for parallel-line 
model calculated following USP <1032> 
guidance approach A (derived as a tolerance 
interval for the measure of nonsimilarity, 
quadratic coefficient and slope ratio)

Lower Limit
Upper 
Limit

Linearity (quadratic 
coefficient)

0.790 1.266

Parallelism (slope 
ratio)

–0.037 0.008

Table 3:  Absolute intermediate precision (by level) and overall intermediate precision for 
parallel‑line and parallel-curve approaches

Target RP

Parallel-Line Method Parallel-Curve Method

n
IP 

(GCV%)
IP Upper Confidence 

Limit at 95% n
IP 

(GCV%)
IP Upper Confidence 

Limit at 95%
50 33 13.9 14.9 53 13.1 15.0
71 33 18.7 20.3 53 15.6 16.3

100 41 12.1 13.4 54 12.6 14.0
140 37 15.0 17.0 52 13.0 14.2
200 37 18.3 22.0 53 15.4 17.0

Overall IP 15.5 13.9

Table 2:  Equivalence margin for parallel-curve 
model was calculated following USP <1032> 
guidance approach A (derived as a tolerance 
interval for the measure of nonsimilarity, 
RSSEnonPar). Because the RSSEnonPar ranges 
from 0 to ∞, only the upper limit is calculated. 

Upper 
Limit

Parallelism
(composite measure RSSEnonPar) 

0.045
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historical data is to better control the 
false-failure rate (the rate of failing a 
sample that is, in fact, acceptable). 
The drawback of that method is that 
it does not allow control of the 
false‑pass rate (the rate of passing a 
sample that has an unacceptable 
difference in performance relative to a 
standard). 

In this case study, we decided to 
implement the equivalence testing by 
using approach A (Figure 3). We 
performed a prevalidation study to 
establish equivalence intervals for both 
approaches. We derived those intervals 
as tolerance intervals for the different 
measures of nonsimilarity (slope ratio 
and composite measure). 

Determine Whether the 
Nonsimilarity Value Is within the 
Equivalence Interval

We assessed parallelism by comparing 
the nonsimilarity value to the 
corresponding equivalence interval. 

Results of the nonsimilarity measure 
obtained during validation exercise 
were compared to equivalence intervals 
determined in the second step.

For parallel-line models, we 
assessed nonsimilarity (parallelism) 
using the slope ratio between the 
standard and test sample 
dose‑responses. Parallelism is accepted 
when slope ratio for the couple 
standard/sample is contained inside 
the equivalence interval. A linear 
model presupposes linearity of a 
dose‑response. That characteristic also 
can be assessed using equivalence 
testing through the quadratic 
coefficient of each dose–response. 

For parallel-curve models, two 
response function curves (standard/
sample) are considered to be parallel 
when the RSSEnonPar measure is less 
than or equal to the equivalence limit. 

Relative Potency Calculation

As soon as the similarity assumption is 
demonstrated, a sample’s relative 
potency can be calculated. To compute 
relative potency in a parallel-line 
model, a linear regression with a 
common slope and different intercepts 
is fitted on the linear range selected 
from the 4-PL curve of the couple 

standard/sample. Relative potency (RP 
in %) is computed using Equation 3.
Here, aT is the test-sample intercept, 
aS is the standard-sample intercept, 
and b is the common slope.

In a parallel-curve model, for each 
couple standard /test sample, the 
relative potency (RP %) is computed 
using Equation 4. Here, EC50S and 
EC50T are the EC50 parameters of 
the reference sample and of the test 
sample, respectively.

Validation 
We performed a validation exercise to 
evaluate the method’s performance 
(intermediate precision and relative 
accuracy). A validation should 
demonstrate that a method is suitable 
for its intended use, in this case for 
routine quality control activities. 
However, because the amount of 
historical data is limited in the initial 
stage of drug development, we did not 
set predetermined method-
performance specifications. Instead, 
we used validation objectives based on 
commonly accepted acceptance criteria 
for ligand binding assays (see 
Intermediate Precision and Relative 
Accuracy sections below). 

To mimic under- and over-potent 
samples, we diluted reference material 
at five concentration levels covering 
the range between 50% and 200% of 
the nominal concentration. These 
percentages constitute the target 
relative potencies in the validation. 
For these calculations, the RP 
measurements were log-transformed 
because the RP are log-distributed. 

Two operators performed validation 
experiments over five days. Each 
operator analyzed independent 
preparations of standard (two per plate) 
and samples in three independent 
plates per day. Relative potencies were 
calculated by comparing each sample 
log(dose)‑response curve to the two 
standard log(dose)-response curves 
inside each plate. 

Intermediate precision (IP) 
measures the influence of factors that 
will vary over time after an assay is 
implemented (e.g., multiple analysts or 
instruments). We assessed IP by using 
a variance component analysis taking 
into account the factor series. Each 

Table 4:  Estimated slopes and corresponding 
90% confidence intervals for trend in bias 
evaluation

Model Estimated Slope (90% CI)
Parallel line 1.028 [0.991; 1.065]

Parallel curve 1.020 [0.993; 1.047]

Table 5:  Relative bias at each target relative potency level

Parallel-Line Model Parallel-Curve Model
Target RP% Geom. Mean Relative bias% (90% CI) Geom. Mean Relative bias% (90% CI)

50 49.5 –0.99 [–5.60; 3.84] 50.9 1.86 [–1.96; 5.83]
71 68.4 –3.61 [–9.15; 2.27] 70.1 –1.21 [–5.04; 2.78]

100 99.8 –0.24 [–4.03; 3.70] 99.3 –0.75 [–4.21; 2.84]
140 137.5 –1.81 [–6.71; 3.34] 139.9 –0.08 [–3.62; 3.59]
200 205.5 2.74 [–3.56; 9.46] 207.8 3.88 [–0.43; 8.38]

Figure 3:  Different approaches presented in USP<1032> to help defining equivalence intervals; 
TOST = two one-sided test, CI = confidence interval
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series was defined as a unique 
combination of three factors: operator, 
day, and plate. We combined resulting 
estimations of variance components of 
the interseries (SD2

inter) and intraseries 
(SD2

intra) variation to establish overall 
IP of the assay at each level. The value 
was expressed as percent geometric 
standard deviation (%GSD) as shown 
in Equation 5. We set IP at each 
target RP level ≤20% as the target 
acceptance criterion.

Relative accuracy is the relationship 
between measured RPs and target 
RPs. We assessed accuracy in two 
steps: through a trend in relative bias 
across levels and at individual levels.

We measured trend in bias using 
the estimated slope of linear regression 
between measured log RP and target 
log RP. A slope = 1 corresponds to the 
case in which measured RPs are equal 
to target RP. An equivalence test 
determines whether the slope can be 
considered as equal to 1 (no trend in 
bias). As an acceptance criterion, the 
90% confidence interval of the 
estimated slope had to be inside the 
equivalence margin (0.8–1.25). We 
calculated the relative bias at each 
level, as shown in Equation 6. We set 
the confidence interval of the relative 
bias at each level ≤30% as the target 
acceptance criterion.

Total-Error Approach

We assessed method bias and 
variability individually by using the 

USP <1033> approach. To have a 
comprehensive measure of method 
performance, we applied the 
total‑error approach (14) to both 
models. This statistical approach 
combines in a single measure the 
estimates of systematic and random 
errors, which is the combination of 
trueness and precision. A total-error 
profile is obtained by linking the 
lower bound and upper bound of the 
β-expectation tolerance limits 
calculated at each target relative 
potency level. The profile can be used 
as a statistical tool for controlling the 
risk of accepting methods that do not 
fulfill suitability requirements. If the 
tolerance interval lies within 
acceptance limits, there is a chosen 
probability (e.g., 95%) that at least a 
proportion β of future measured assay 
values are inside predefined acceptance 
limits (A, B; e.g., ±30%). The method 
is then considered suitable for its 
intended use. Predefined acceptance 
limits must be chosen according to the 
intended use of the method. For this 
case study, we used a beta version of 
Seelva 2.0 from Arlenda to calculate 
the total-error profile. 

Results 
Suitability Testing, Parallel‑Line 
Model: Our equivalence intervals for 
the quadratic coefficient and slope 
ratio were based on historical data 
obtained before validation. We 
defined linear regions from the 4-PL 

curves of 56 reference samples. We 
estimated 56 quadratic coefficients 
and 196 slope ratios from all possible 
combinations of two dose‑response 
curves inside each plate. We used 
estimated values to define equivalence 
intervals for linearity and parallelism 
(Table 1).

During the validation exercise, we 
evaluated 276 standard/sample couples 
for suitability testing using the 
equivalence intervals shown in Table 
1. Of the total 276 standard/sample 
couples, 181 passed the suitability tests 
for linearity and parallelism (rejection 
rate = 34.4%). We evaluated validation 
parameters on the 181 relative 
potencies calculated from the samples 
that passed the suitability tests. 

Parallel-Curve Model: We calculated 
the equivalence interval for the 
composite measure (RSSEnonPar) based 
on the 196 RSSEnonPar estimated from 
all possible combinations of two dose–
response curves inside each plate 
obtained from the 4-PL curves of the 
56 reference samples. Table 2 lists that 
interval. During the validation exercise, 
we evaluated 276 standard/sample 
couples for suitability testing using the 
equivalence interval shown in Table 2. 
Out of that total, 265 standard/sample 
couples passed the suitability tests for 
parallelism (rejection rate 4%). The 
validation parameters thus were 
evaluated on the 265 relative potencies 
calculated from the samples that passed 
the suitability tests.

Figure 4:  Total-error profile for parallel-line approach; the plain red line 
represents the relative bias, the dashed lines the β-expectation tolerance 
limits and the dotted lines the acceptance limits (–30% and +30%). The 
dots represent the relative error of the relative-potency (RP) values 
plotted at the corresponding RP level.
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Figure 5:  Total-error profile for parallel-curve approach; the plain red line 
represents the relative bias, the dashed lines the β-expectation tolerance 
limits and the dotted lines the acceptance limits (–30% and +30%). The 
dots represent the relative error of the RP values plotted at the 
corresponding RP level.
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Intermediate Precision: We used 
the RPs that passed suitability testing 
to estimate the IP of both datasets. 
Table 3 shows the absolute IP by 
target RP level and the overall IP for 
both datasets. IP is expressed as 
percent geometric coefficient of 
variation (%GCV). 

For the parallel-line model, IP 
ranges 12.1–18.7%, according to the 
level, and maximum IP value is 
observed for the 71% target level 
(18.7%). For the parallel-curve model, 
IP varies from 12.6% to 15.6% 
according to the level, and maximum 
IP value is observed for the 71% 
target level (15.6%). Results obtained 
for both approaches are comparable 
in terms of absolute (by level) and 
overall IP. Overall IP is <20% for 
both models. However, a better 
precision is obtained for the parallel-
curve model (13.9% compared with 
15.5%). 

Accuracy: We used the RPs that 
passed suitability testing to estimate 
relative accuracy. We first evaluated 
relative accuracy using the trend in 
relative bias across levels. Table 4 
shows the slopes obtained from the 
linear regression and with their 90% 
confidence intervals (CIs) for both 
datasets. 

Both approaches met the 
acceptance criterion because the 90% 
CI of their estimated slopes fell 
inside the acceptance margin (0.8–
1.25). Because we did observed no 
trend in relative bias, we computed it 
at each level. Table 5 lists the relative 
bias at each individual level with the 
corresponding 90% CI for both 
models. The acceptance criterion was 
met for both approaches because the 
90% CI of relative bias at each 
individual level is ≤30%. 

Total-Error Approach: Figure 4 
shows the total-error profile for the 
parallel-line approach, and Figure 5 
shows it for the parallel-curve 
approach. The plain red line 
represents the relative bias, the 
dashed lines represents the 
β-expectation tolerance limits, and 
the dotted lines are the acceptance 
limits. The dots represent the relative 
error of RP values plotted at the 
corresponding RP level.

We set acceptance limits at –30% 
and +30%, selected according to the 
intended use of the potency assay, 
with a risk of having measurements 
outside acceptance limits of 10%.

The potency assay is considered to 
be valid in the range for which the 
total-error profile is within 
acceptance limits. Further 
measurements of unknown samples 
will be included within the tolerance 
limits with a given probability. When 
the tolerance interval is within 
acceptance limits, it means that with 
a risk of 10% (α = 10%), at least 90% 
(proportion β) of future results 
generated by the method will be 
included within the acceptance 
criteria. 

Based on the total-error profile, 
we calculated the range of the 
potency assay as the concentration at 
which the β-expectation tolerance 
interval crosses the acceptance limits 
set at ±30%. For the parallel-line 
approach, the calculated range is 
50.0–169.6%, and for the parallel-
curve approach that range is between 
50.0% and 188.9%. For both models, 
analytical ranges obtained with the 
total-error approach are comparable 
and do not significantly differ from 
results obtained when using the USP 
validation — even if for the total 
error approach, the ranges are slightly 
tighter.  

Discussion

Considering the results obtained for 
IP, trend in bias, and relative 
accuracy, we concluded that the 
relative potency method was valid for 
the 50–200% range of nominal 
concentration for both models 
(parallel-line and parallel-curve). 
However, some discrepancies 
between the two approaches exist. 
We have determined how to improve 
the statistical approach presented in 
this case study.

Rejection Rate: We saw a 
significant difference in rejection 
rates. Based on the system suitability 
criteria defined for each model, 
34.4% of dose–response curves (95 
out of 276) were discarded in the 
linear model (similarity assessed 
based on slope ratios) compared with 

4% (11 dose–response curves out of 
276) in the parallel-curve approach 
(similarity assessed based on RSSE 
values). 

One reason for the low rejection 
rate observed in the parallel-curve 
approach could be that equivalence 
limits were too wide. That led to the 
acceptance of dose–response curves 
that in reality should have been 
discarded because of potential 
nonparallelism. In other words, the 
equivalence limit set for the 
parallel‑curve approach wouldn’t be 
strict enough to discriminate between 
“bad” and “good” dose–response 
curves, ultimately increasing 
consumers’ risk. By erroneously 
accepting curves that do not meet the 
similarity assumption, meaningless 
RP values might be taken into 
consideration, which can inf luence 
the evaluation of validation 
characteristics. 

On the other hand, we could apply 
the same reasoning to the parallel-
line approach. In such a case, too 
tight equivalence margins might have 
caused the high rejection rate. 
Therefore, “good” dose–response 
curves might have been erroneously 
rejected, increasing producers’ risk. 

Nevertheless, comparing 
validation results between both 
approaches indicates that the 
inf luence of the difference on the 
rejection rate is quite limited. In fact, 
even with this difference, we 
obtained comparable validation 
results in terms of IP, trend in 
relative bias, and relative accuracy for 
the 50–200% range. We confirmed 
our validation results by applying the 
total-error approach, the combination 
of the systematic errors (bias) and 
random errors (precision) in one 
single measure (total-error profile). 
As mentioned above, the total-error 
profile is a powerful prediction tool 
that helps us control the risk of 
accepting an unsuitable assay. In our 
case study, the analytical range 
derived from the total-error profile is 
comparable for both models. 

Even if validation results are 
comparable between both models, the 
estimation of the validation 
characteristics is more precise in the 
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parallel-curve model, especially in 
terms of precision. That could be 
explained by the higher number of 
RPs values used for the validation 
exercise with the parallel-curve 
model. But the parameters used to 
compute RP in a linear model can be 
less accurately estimated, which can 
lead to a higher residual variability. 
In fact, the linear range is selected 
from sigmoidal response curves with 
consequence on the goodness of fit of 
the linear model (15). In addition, as 
described in USP <1032>, a linear 
model must be used with caution 
because the apparently linear region 
may shift over the time with an effect 
on the parallelism. Such an effect 
could lead to a higher rejection rate.

Methodology Used to Define 
Equivalence Limits: As described by 
Hauck et al., approach A described in 
USP<1032> — tolerance interval 
derived from historical values of 
nonparallelism — is the simpler 
approach to determine equivalence 
limits, and it does not take into 
consideration the imprecision of 
nonsimilarity replicates (8). As the 
authors present, that point could be 
addressed by considering the 
confidence intervals of the 
nonsimilarity measure, which 
corresponds to approach B in USP 
<1032>. In that approach, equivalence 
limits are set as a nonparametric 
tolerance interval derived from the 
maximum departure of the 
confidence interval of nonsimilarity 
measure. 

We defined equivalence limits 
based on approach B on the linear 
model data (data not shown). The 
rejection rate dropped down to 
11.2%, which supports the hypothesis 
that equivalence limits set with the 
approach A were too strict. Because 
of statistical constrains, we are not 
yet able to apply approach B to the 
nonsimilarity RSSE values. 
Therefore, no comparison of the 
equivalence limits calculated by using 
approach B on both models was 
performed. 

USP<1032> presents a third 
approach (approach C). Equivalence 
limits are defined based on historical 
data from reference material and 

known failures (e.g., degraded 
samples). This approach allows 
defining a cut point to discriminate 
between good and bad results. 
However, the methodology’s 
limitation lies on the degree of 
sample degradation, which can 
directly inf luence the cut point. 

Again, the precision of the 
equivalence limits definition will 
depend on the amount of historical 
data. In the early phases of drug 
development, such limits can be 
considered as provisional and should 
be refined throughout drug 
development using data collected over 
time. 

Perspectives

Considering the validation 
characteristics and rejection rates 
between both tested methodologies 
(linear and nonlinear), the preferred 
approach for relative potency 
determination in this case study is 
the parallel-curve model. Using it, we 
obtained a lower rejection rate 
without inf luencing method 
performance. 

Relative potency is a measure of 
how much a test preparation is 
diluted or concentrated relative to a 
standard (1, 4). Although a linear 
model is considered to be the easiest 
model to demonstrate parallelism (8, 
9), the risk of having the linear part 
drift over time — altering parallelism 
— is high. In addition, sample 
degradations usually affect the dose–
response at asymptote levels before 
affecting slope, which is the only 
parameter evaluated in the parallel-
line model. Therefore, by considering 
only the linear part, scientists might 
fail to identify low levels of product 
degradation because of a lack of 
information of upper asymptotes. 
When full dose–response curves are 
used to test similarity, both 
asymptotes can be taken into 
consideration to compare a standard 
and sample. However, that approach 
implies a bigger statistical effort to 
determine the degree of parallelism 
between both functions and to verify 
similarity assumption.  

When two response curves are 
not parallel, the distance between 

their concentration points is not 
constant, so the smallest variation 
can affect parallelism. This 
underlines the importance of using 
the correct measure of nonsimilarity 
to assess parallelism (the condition 
required before calculating a 
relative potency). 

For our case study, we used a 
composite measure (RSSEnonPar) 
that considers all parameters 
together in a single measure, as 
proposed by the USP guidance. The 
composite measure is not an 
absolute measure. Therefore, it can’t 
be compared across methods and is 
highly inf luenced by the readout 
(absorbance, relative f luorescence 
and luminescence values). USP also 
proposes assessing parallelism based 
on f itting model parameters. That 
can be achieved through an 
intersection-union test (IUT), 
which jointly assesses the 
equivalence of slope and lower and 
upper asymptotes (16, 17). In the 
IUT method proposed by Jonkman 
for each of these three parameters, 
a ratio between the obtained values 
for the test and the reference 
parameters is calculated, together 
with its confidence interval. Yang et 
al. propose a modif ied IUT based 
on three measures derived or 
directly obtained from the 
parameters of the curves: 

• The effective window (the 
difference between lower and upper 
asymptotes) 

• The slope of the dose–response 
curve at EC50 (the difference 
between upper and lower 
asymptotes multiplied by the hill 
slope divided by four), 

• The upper asymptote. 
For each measure, a ratio 

between the obtained values for the 
test and the reference curve is 
calculated, together with its 
confidence interval. Parallelism of 
the test and reference curves is 
accepted only if the confidence 
interval of each of the three ratios 
is fully within a ratio‑specif ic 
equivalence margin previously 
defined.

Using RSSEnonPar metrics is a 
simple, quick, and complete method 



to test parallelism of 4-PL curves. 
But it would be interesting, in a 
future exercise, to compare both 
approaches (RSSEnonPar and IUT). 
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