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C ell-free synthesis (CFS), also 
known as cell-free transcription 
and translation, supplements 
cellular components (either a 

cell lysate or purified recombinant 
elements) with nucleotides, amino 
acids, metabolic intermediates, and 
salts to produce a nucleic acid or 
protein from a genetic template added 
to the reaction. This exciting 
technology has seen a substantial 
increase in both academic and 
commercial interest over the past 
decade (1). Interest stems in large part 
from the potential to democratize 
access to the machinery of biology by 
removing the need to engineer cells 
genetically (2). CFS has the potential to 
revolutionize healthcare in much the 
same way that personal computers did 
for information technology (3). 
However, our interest and that of the 
bioprocessing community at large 
comes from the potential to transform 
manufacturing for some healthcare 
products (4).

A growing area in which CFS 
platforms are recognized as a potentially 
enabling technology is in stratified 

approaches to facilitate distributed 
manufacturing of biological products (5). 
Although still developing as a 
manufacturing technology, CFS offers 
flexibility and potentially improved 
robustness over existing cell-based 
biotherapeutic manufacturing. The 
technology could reduce on-site 
footprints and infrastructure complexity 
and allow for robust process control 
combined with flexibility of output. In 
this context, University College London’s 
biochemical engineering department — 
working with the Future Targeted 
Healthcare Manufacturing (FTHM) Hub 
supported by the United Kingdom’s 
Engineering and Physical Sciences 
Research Council (EPSRC) — has 
undertaken a series of workshops 
(pictured herein). They focused on 
elucidating drivers and barriers to the 
use of this technology for stratified 

medicines manufacture and mapping out 
desirable future states of the technology. 

Here we summarize the FTHM Hub 
specialist working group’s discussions 
toward a roadmap for CFS platforms. We 
begin with a short history of CFS before 
proceeding to consider the motivations 
for commercial interest by looking at 
existing applications of the technology. 
Finally, we examine the technical 
challenges in applying CFS in 
bioprocessing and map the 
developmental stages toward a CFS-based 
device for distributed manufacturing. 
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A Brief History
CFS is not a new technique. It was used 
first in 1961 and played an important 
role in understanding the genetic code 
and central dogma of modern biology: 
the link between DNA, messenger RNA, 
and protein expression (6). Figure 1b 
illustrates this history with a plot of the 
number of papers related to CFS showing 
a peak of interest in the early 1970s, 
followed by a substantial revival of 
interest over the past two decades. CFS 
activity follows the features of a classical 
hype curve for a new technology (7). As 
Figure 1a also shows, the number of 
extract sources and product types has 
expanded rapidly, with CFS used for the 
production of antigens, virus-like 
particles (VLPs), cytokines, antibodies, 
peptides, membrane proteins, viable 
bacteriophages and viruses, enzymes 
containing metal cofactors, proteins 
containing nonstandard amino acids 

(also known as nonnatural amino acids), 
and RNA. Applications also have 
expanded rapidly, including 
advancements in mobile biosensors (8) 
and manufacturing platforms (5).

Research to date has focused largely 
on optimization of the CFS reaction mix 
(nucleotides, amino acids, metabolic 
intermediates, and salts) and on cell-
extract production, particularly source-
strain modifications and use of different 
cell types. Those efforts have produced 
order-of-magnitude improvements in 
titer, with 2.3 mg/mL the maximum 
cited so far (9).

Figure 2 compares the rate of titer 
improvement achieved with the Chinese 
hamster ovary (CHO) manufacturing cell 
line with that achieved in CFS systems. 
This comparison brings us to a number 
of key observations. First, the titers 
currently achievable in a CHO-based 
system are an order of magnitude greater 

than those obtainable with CFS (10) — 
shown to be comparable from both 
Escherichia coli and CHO CFS systems in 
Figure 1a. However, that should be 
considered in the context of very 
differing levels of investment. Intensive 
process development for the CHO system 
has been ongoing for decades. By way of 
comparison, the number of papers 
published in CFS has reached about 40 
per year, whereas for CHO it is about 200 
per year and has been increasing 
linearly since the early 1970s. 

Second, titers reported from CFS 
reactions show a wide scatter, reflecting 
the diversity of products and platforms 
(cell types) involved. In addition, titer 
variation may have been exacerbated by 
a lack of cross-laboratory good practice 
for reaction conditions used (11) and the 
fact that few researchers in the domain 
are focused on producing their protein 
of interest for a preparative or 
manufacturing application. In 2012, 
Carlson et al. (12) presented data on the 
trend in titers for chloramphenicol 
acetyltransferase (CAT) produced in CFS 
reactions, which represent the most 
complete set of data yet available 
charting historic improvements in cell-
free titers for a single recombinant 
protein product. If we consider that 
trend, then progress in CFS titers has 
been substantial and sustained, and it 
compares well with the trajectory 
achieved so far with monoclonal 
antibody (MAb) expression in CHO cells. 
That could reflect the openness of the 
system and relative simplicity and 
speed with which CFS process 
modifications can be implemented. 

Considering both the rapid rate of 
titer improvements achieved to date and 
the demonstrated scalability of the 
technology (13), the potential of CFS is 
clear. So why is adoption of the 
technology limited to so few companies 
in this domain to date, and what 
applications for CFS could drive growth 
(11)? To answer these questions, we 
begin with a few exemplar companies 
and their rationale for using CFS.

Exemplar Commercial  
Bioprocess Applications
Antibody–Drug Conjugates (ADCs): 
Worldwide more than 50 ADCs currently 
are in clinical trials (14), and 250 are 

Figure 1: (a) Historic achievements in cell-free synthesis (CFS) across different cell types, 
with an indicative range of protein types and relative titers (log proportional to the icon 
size) achieved to date; the key achievement of incorporating nonstandard amino acids 
(NSAA) is highlighted. Another key achievement was cell-free glycosylation using 
Chinese hamster ovary (CHO) cell lysate in 2014. Bacterial extracts come from A19, 
Rosetta (DE3), BL21 (DE3), BL21, star (DE3), and ClearColi BL21 Escherichia coli strains 
that have been engineered to make them more suitable for manufacturing. Yeast extracts 
come from Pichia pastoris and Saccharomyces cerevisiae strains; mammalian extracts 
from CHO, human embryonic kidney (HEK), human epithelioid cervix carcinoma (HeLa) 
cells, and from blood-derived leukocytes; and plant extracts from wheat germ and 
tobacco. Results presented herein come from a range of research groups with limited or 
no standardization, so parameters such as the CFS reactor type (batch or substrate 
addition/inhibitor removal by dialysis), reaction mix and length do not match (see 13 and 
Further Reading). (b) The numbers of CFS papers published per year are based on a 
Scopus search for the terms cell-free and synthesis in article titles.
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under development, with the market 
projected to be worth US$15 billion by 
2030 (15). ADC product critical quality 
attributes (CQAs) often are more 
complex than those for therapeutic 
proteins alone, including attributes such 
as the ratio of conjugated drug to 
antibody (16). CFS offers the ability to 
incorporate nonstandard amino acids 
(NSAAs), which enables control of the 
location and number of conjugation sites 
(17), rapid prototyping of proteins, and 
subsequent scaling and incorporation of 
potent toxins as loads. 

Based in South San Francisco, Sutro 
Biopharma was founded in 2003 and 
employs about 200 people. Its good 
manufacturing practice (GMP) 
production facilities use the proprietary 
Xpress CF+ cell-free platform to produce 
ADCs, bispecific antibodies, and 
cytokine-based therapies. The 
company’s pipeline includes drugs in 
clinical trial stages from discovery to 
phase 1 that have been developed alone 
and in partnerships with Bristol-Myers 
Squibb, EMD Serono, and Merck using 
Sutro’s platform (18).

Toxin Manufacture: Ipsen Biopharm is 
a global biopharmaceutical company 
with products in neuroscience, 
consumer healthcare, oncology, and rare 
diseases. One of its products is 
botulinum toxin used as a therapeutic 
for disorders caused by over-activity of 
muscles (19). The toxin is highly potent, 
so very low doses are required, and 
manufacturing is performed with 
relatively small-scale equipment. 
However, employees face substantial 
hazards during production (unusual for 
a biotherapeutic product) because of the 
extreme toxicity of the product. The 
challenge of managing those risks 

motivated this company’s interest in 
CFS. The absence of cells allows for 
relatively little manual intervention 
during toxin synthesis, thus reducing 
the risk of containment loss. A 
collaboration among Ipsen Biopharm, 
Touchlight Genetics (which has a cell-
free DNA synthesis technology), and the 
UK Centre for Process Innovation (CPI) 
is under way with the goal of developing 
a fully enclosed process for safely and 
securely producing this toxin (20).

RNA Products: Headquartered in 
Medford, MA, GreenLight Biosciences 
was founded in 2009 and employs about 
100 people. The company produces RNA 
using the proprietary GreenWorX cell-
free platform. The company’s interests 
are in vaccine development, pandemic 
preparedness, and plant protection 
against disease and pests. Thus, the 
greater speed of response and lower cost 
compared with other methods for RNA 
production are key motivators for 
GreenLight to use CFS. Using RNA as an 
insecticide/fungicide is a novel 
technology that requires development 
(21), so the short prototyping turnover 
also is important. This company has 
partnerships with Bayer Crop Science, 
AgroSpheres, and Advanced 
BioNutrition.

Drivers for CFS Use
The case studies above show that uptake 
of CFS is driven by potential for

• improved control of product quality 
through standardized bulk manufacture 
of reagents as well as direct access to 
cellular machinery and mechanisms for 
protein engineering (e.g., introduction 
of NSAAs)

• the ability to make products that 
are difficult/impossible to express or 
make consistently using existing 
technology through removal of the need 
to keep cells alive and healthy, which 
broadens the available range of 
products, reaction conditions, and 
mechanisms for protein engineering

• ease of containment because of 
simplified equipment requirements in 
the absence of fermentation/cell culture 
and live genetically modified organisms

• increased speed of process 
development, enabling rapid-response 
manufacturing through shortened 
timelines for prototyping and 
subsequent scale-up (typical protein 
synthesis in a CFS system requires three 
to four hours rather than three to four 
weeks for CHO cell culture and two to 
three days for E. coli fermentation, 
excluding stable cell-line generation)

• increasing interest in mRNA-based 
therapeutics (22, 23) for which CFS/
in vitro transcription is a leading 
manufacturing platform.

Within the context of the FTHM Hub, 
we were interested particularly in the 
applicability of CFS to personalized or 
stratified medicine. Intended to serve 
particular groups of patients identified 
by genetic screening and diagnostics, 
these drugs represent a more efficient 
use of limited resources and a better 
outcomes than might be available 
through the traditional model. It is 
anticipated that growing consumer 
knowledge and demand will increase 
the “market pull” for such medicines. 
That pull will come from both 
healthcare providers/funders and 
patients (24). 

Table 1: Drivers for uptake and potential technical improvements that cell-free synthesis 
currently allows or may allow in the future

Challenges Driving CFS Uptake Enabling Features of CFS
Pressure on development time and cost for 
manufacturing processes (particularly in pandemic 
control situations, for example, or for maximization of 
market share in small cohorts)

Ease of scale-up; reduced timelines for 
process development (high-throughput) 

Distributed manufacturing of drug manufacture for 
increased drug stratification and/or political desire for 
geographical localization and/or industry desire to 
reduce logistics-related carbon footprint and complexity

Reduced infrastructure requirements and 
operator expertise; ease of automation; 
increased predictability based on critical 
process parameters (CPPs); improved 
reproducibility; reduced reliance on cold chain

Next-generation products such as antibody–drug 
conjugates with demanding, specific product quality 
attributes (PQAs)

Improved control of product quality

Toxicity of some products to cells Reduced sensitivity to process environment
Toxicity of some products to operators Ease of containment and/or reduced 

intervention

Figure 2: Comparing the evolution of titer 
in glutamine synthetase (GS) selected 
Chinese hamster ovary (CHO) cells and 
cell-free production systems (12, 13, and 
Further Reading)
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To enable stratified CFS production of 
therapeutic proteins/nucleic acids, many 
experts envision centralized large-scale 
production of raw materials and 
localized production of the final 
therapeutic product, as outlined by 
Ogonah, et al., in 2017 (4). In principle, 
CFS is well suited for such localized 
manufacturing because of the reduced 
infrastructure and expertise required 
for protein production, making it 
suitable for automation and amenable to 
reproducibility/predictability 
improvements over the current 
biomanufacturing model. 

To date, cost of goods (CoG) reduction 
has not been a primary driving factor 
for the uptake of CFS, and it is unlikely 
to be so in the future. Indeed, analysis 
conducted within the FTHM Hub 
suggests that prokaryotic-based CFS 
currently is more expensive ($/mg) than 
CHO-cell–based processes, although 
only by a factor of about two (25). With 
protein biologics designed for small 

groups of patients, the route to reduced 
costs no longer can come from 
economies of scale, no matter the 
platform, which gives further impetus 
to reexamining our manufacturing 
paradigms. Some evidence suggests that 
at personalized or orphan-medicine 
scales, the economics may favor CFS 
(10). With its raw material components 
produced at scale, the goal can be 
minimal customization from product to 
product. It also is anticipated that costs 
will decrease substantially over time — 
e.g., by use of modified or alternative 
source strains (26, 27), with cell extracts 
currently representing a substantial 
proportion of the overall costs (25).

Challenges to CFS Uptake
Although the development rate for this 
technology is a function of both 
commercial and technical factors (24), 
here we focus only on the technical and 
regulatory barriers to uptake. First we 
consider the possibility that the same 

technical outcomes can be achieved 
through a competing technology. Then 
we assess the size of the technical 
obstacles to be overcome for arriving at 
a CFS-based device that will be 
acceptable to regulators for distributed 
manufacturing.

Competing Technologies for Stratified 
Medicines Production: Cell-based 
synthesis has been and continues to be 
the highly effective format of choice for 
most companies making or wishing to 
make recombinant proteins. We do not 
anticipate CFS to supplant cell-based 
manufacture entirely. However, as 
highlighted above and summarized in 
Table 1, CFS does offer a number of 
distinct advantages, particularly for 
distributed manufacturing. The costs, 
time, and resources required for 
development of a larger range of 
treatments, each with a naturally 
limited market, imply that stratified 
medicines will require streamlined 
development and manufacture. But can 

Figure 3: This Ishikawa (“fishbone”) diagram shows technical, organizational, and logistical challenges in achieving the objective of 
“making an injectable biotherapeutic without cells, using automated, on-demand, localized manufacture,” as identified by the academic 
and industrial participants in the FTHM Hub (see Acknowledgments). Red boxes highlight critically important areas. An intermediate 
phase of technology readiness is indicated by more than one color in the traffic-light icons (11, Further Reading).
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existing technologies or alternatives in 
development match CFS?

Such alternative approaches include 
• decentralized manufacture using 

the currently predominant cell-based 
batch manufacturing 

• intensified cell-based manufacture 
(e.g., continuous bioprocessing (28, 29)) 

• modular manufacturing units (30) 
• use of alternative host organisms 

with simplified requirements (31–33) 
• use of transient transfection 

approaches (10).
Within cell-based production, only 

intensified production with alternative 
hosts offers the possibility of relatively 
simple automation (without expensive 
robotics for handling cell culture 

processes/equipment) that might enable 
localized production of biotherapeutics 
(33). However, the complexity of the 
equipment and expertise required to 
control for variability in cellular 
responses must be resolved to achieve 
full automation (34, 35). For cell-based 
systems, maintenance of cell banks also 
will remain necessary, complicating 
distribution and storage of reagents.

A continuous production platform 
based on Pichia pastoris, an expression 
system capable of product secretion with 
low levels of harvest host-cell proteins 
(HCPs), has been proposed and trialed 
under the auspices of the Biologically-
Derived Medicines on Demand (Bio-MOD) 
project of the US Defense Advanced 

Research Projects Agency (DARPA) (33). 
The bio-MOD program also funded a CFS-
based tool for “battle-field medicine” 
(36). Considerable efforts have gone into 
engineering human-like glycosylation in 
the P. pastoris host, but it has yet to be 
fully resolved (37). Therefore, similar 
technologies also are in development 
using mammalian cells, which do require 
longer timelines with a more complex 
host cell but also offer an established 
method for direct human-like 
glycosylation of protein products. It could 
be argued that host types that produce 
aglycosylated proteins, either in cell-free 
or cell-based systems, might enable 
greater product quality control through 
subsequent enzymatic glycosylation (38).

Figure 4: Roadmap with development stages of prototype devices envisioned to achieve production of “an injectable biotherapeutic 
without cells, using automated, on-demand, localized manufacture,” starting with a system based on that described by Adiga et al. (5), 
with additions from Pardee et al. (47) and Crowell et al. (33). Subsequent intermediate prototype and fully on-demand manufacturing are 
based on the technical development areas identified in Figure 3 and our understanding of which ones can and need to be addressed 
first. Device schematics and descriptions indicate distributed elements of the technology. Text below the schematics (in dashed boxes) 
indicates raw material and quality control (QC) development activities that might be completed elsewhere (e.g., at a centralized facility). 
Green text indicates the first appearance of a feature retained in the final device.

In vivo generated plasmid; CHO extract

No raw material attributes measured; 
raw materials produced in house.

Unintegrated/o�-line in-depth research 
analytics (e.g., mass spectrometry, surface 
plasmon resonance, bilayer interferometry, 
nuclear magnetic resonance, and 
circular dichroism)

O�-line quality control analytics (e.g., host-
cell protein ELISA, HCD qPCR, product 
Western blot/ELISA, SDS-PAGE, HPLC, 
cell-based potency assays)

In vitro, enzymatically generated, 
optimized plasmid; lyophilization of 
extracts and plasmids; prokaryotic or 
plant-cell extracts (less expensive).

Full raw-material attributes measured 
and tracked centrally, including stability 
studies and fingerprinting.

Unintegrated/o�-line in-depth research 
analytics and o�-line quality control 
analytics used to set valid process 
operating windows; electronic 
transmission of instructions/online 
analytics analysis.

In vivo generated plasmid; lyophilization 
of extract and plasmid; prokaryotic or 
plant cell extracts (less expensive)

Raw-material attributes measured 
centrally (e.g., ribosome concentration, 
mRNA and product production rates for 
standard proteins such as green 
fluorescent protein).

On-line analytics (e.g., near-infrared 
spectroscopy and spectral analysis) to be 
analyzed against o�-line research and 
quality control QC analytics for validation.

(device-specific consumables
indicated by colored units)

Early Prototype
(based on Adiga et al., 2018) Intermediate Stage of Development Fully On-Demand Manufacturing

FUTURE

Feeds

CURRENT

Untagged proteins

Hardware: clean pump, 
e�ective heating, 
optimized reactor 
design and shaker 
movement

Controls and online 
analytics (e.g., NIR and 
Raman spectral analysis)

Barcoded sterile, 
single-use piping, 
membrane absorbers, 
freeze-dried reactant 
feed capsules

Fully automated

8.5 hours to product 
release

Untagged proteins

Hardware: clean
pump, optimized 
mixing

Controls: UV, 
temperature, shaker 
speed, pressure 
sensors

Sterile, single-use 
piping, syringes, and  
membrane absorbers

Manual rehydration 
and loading 

Automated running

8.5 hours to product 
(with on-line analysis)

A�nity-tagged protein

Hardware: syringe 
pumps, heating source 
with fan, shaker, and 
UV sensors

Controls: UV, 
temperature, shaker 
speed, pressure 
sensors

Sterile, single-use 
piping, syringes, and 
two chromatograpy
columns

Manual loading to 
simple dialysis reactor

Automated running

8.5 hours to drug 
product

Control/Pumping Unit

Purification

Reactor

Feeds
Control/Pumping Unit

Purification

Reactor

QA/QC

Internet
of Things

UV
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Other technologies exist or are in 
development for modification of cell-
lines and acceleration of cell-line 
development for biotherapeutics. 
However, even at an accelerated rate, 
cell-line development and cell culture 
cannot match the development and 
production timelines achieved with CFS. 
It should be acknowledged that currently 
the CoG and (crude lysate) 
prepurification HCP/DNA levels would be 
higher for material produced in a CFS 
platform than for the proposed 
P. pastoris–based continuous platform. 
Nonetheless the potential of CFS remains 
clear set against its competitors.

Identifying Key Technical Hurdles: 
Having established an understanding of 
the current landscape and potential for 
cell-free technology, the FTHM Hub 
workshop team developed a problem 
statement. Its purpose was to help 
elucidate what would be required from a 
CFS platform to make it a viable 
manufacturing technology for stratified 
medicine. Here is the statement agreed 
upon: “What are the technical 
challenges to making an injectable 
biotherapeutic without cells, using 
automated, on-demand, localized 
manufacture?” Figure 3 summarizes the 
outcomes of this exercise.

As highlighted by the red boxes in 
Figure 3, the concerns of the industrial 
partners with an interest in CFS largely 
related to quality control and regulatory 
release. The challenge for CFS in this 
respect relates to

• complexity of the raw material 
(particularly cell extract) and 
characterization of its CQAs

• limited understanding of which 
raw-material attributes will influence 
reaction performance, which is plasmid/
product-specific and therefore requires a 
process development strategy 

• a need to establish appropriate 
in-process monitoring technologies

• a quality by design (QbD) approach 
to validation for the device to enable 
drug-substance release (39).

The importance of cell extract as a 
raw material is highlighted by the fact 
that two companies discussed in the 
case studies above stress their use of 
in-house developed and proprietary 
extracts and protocols. Furthermore, 
published literature dealing with the 

question of extract preparation is 
extensive (although less so at the 
industrial scale) but diverse and still 
moving toward an accepted best practice 
(40). Even at laboratory scale, the 
sensitivity of cell-extract qualities to the 
production process is poorly understood, 
and such processes require 
systematization and rationalization to 
achieve robustness (11, 41). This issue 
was recently referred to by the CPI, 
which claims to have developed a 
scalable and simplified process for lysate 
production to address the issue (42).

After production of raw materials, 
CFS-reaction robustness and the 
connection between measured process 
parameters and final-product quality 
will need to be understood and ensured. 
The expectation is that tight control of 
raw-material attributes and 
characterization of the reaction’s 
response to critical process parameters 
(CPPs, e.g., temperature and pH), will 
bring cell-free reactions close to the 
reproducibility seen in many small-
molecule and enzymatic processes 
(without undue influence of stochastic 
or unidentified elements). To gather 
such understanding will require a 
combination of high-throughput 
experiments, for which CFS reactions 
are well suited, with appropriate 
modeling and control (43), such as 
through hybrid metabolic models like 
those proposed for cellular systems (44). 

Finally, plasmid preparation (10, 11) 
and design (45, 46) are fields suggested 
by published literature and our own 
experience as likely to have a large 
impact on CFS titers.

Toward the Roadmap 
Figure 4 shows a series of prototypes for 
a compact, localized CFS platform. On 
the left, the first prototype is based on 
systems described by Adiga et al. (5), 
Pardee et al. (47), and Crowell et al. (33). 

The latter developed a system using 
continuous cell-based production, 
however that overlaps with technology 
developments required for stratified 
processing, whether cell-based or cell-
free, such that both technologies can be 
informed by each other (43). And 
recently reported collaborative work 
between CureVac and Tesla to generate 
an automated mRNA production platform 
also represents a technology from which 
a CFS platform could draw (48, 49).

Figure 4 also clarifies the importance 
of supporting technologies, particularly 
related to the centralized supply of 
tightly controlled raw materials and a 
system for on-board product quality 
measurement, control, and release. 
Centralized raw-material production will 
enable investment in robustness and 
reproducibility for economies of scale, 
with specifications set independently of 
a specific product and development of 
analytical techniques aided by 
consistency in raw materials.

Growing scientific understanding of 
disease pathology and the individuality 
of the treatment responses brings great 
potential for a revolution in 
biotherapeutic efficacy and safety. 
However, that will require a new 
paradigm in biotherapeutic production to 
sit in parallel with existing 
biomanufacturing of blockbuster drugs. 
The speed of development for this 
technology will depend on multiple 
factors — e.g., government interest/
support, identification of early 
commercial applications, and vested 
interests in established technologies (24) 
— in order to secure sufficient 
investment to overcome the technical 
challenges highlighted herein. These 
technical challenges are considerable, as 
is the coordination and cross-disciplinary 
working that will be required to 
overcome them. But the history of MAb 
processes based on CHO cells shows what 



can be achieved by a concerted effort 
when the potential of a technology is 
recognized. We hope that our analysis 
will inspire further debate, collaboration, 
and research toward realizing the 
potential of CFS in biomanufacturing.
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