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Gene therapy is the transfer of genetic 
material to a patient’s cells to achieve a 
therapeutic effect. Therapeutic DNA is 
largely delivered using viral vector systems 

based on adenoviruses (Ad), adenoassociated 
viruses (AAV), and lentiviruses (LV). With the 
application of such viral vectors as clinical 
therapeutics growing, scalable commercial 
processes (particularly for purification) are being 
investigated and optimized to best ensure that 
critical quality attributes (CQAs) are retained. 
Herein we review viral vector purification 
techniques and the effect of different 
characteristics of vector classes on the selection of 
optimal unit operations.  

Viral Vector classes

Each class of viral vector has its own challenges 
and opportunities for gene therapeutics (Table 1). 
Adenoviruses were initially proposed for gene 
therapy over 20 years ago, but they are now less 
popular for clinical applications because of 
significant complexities such as their challenging 
vector design and systematic administration, large 
genome size, and (most important) their high 
immunogenicity (1). 

Lentiviruses already have shown promise in 
clinical trials, for which they have been used in 
the treatment of Wiskott–Aldrich syndrome, 
X-linked adrenoleukodystrophy, and 
metachromatic leukodystrophy (2–4). The central 
mechanisam of action (MoA) for lentiviruses 
relates to their ability to transduce both dividing 
and nondividing cells, resulting in life-long 
transgene expression and potential therapeutic 
effect. 

AAVs also are considered a promising tool for 
gene therapy because of their lack of pathogenicity 
and immunogenicity paired with long-term 

transgene expression and broad cell tropism (5). 
Currently, the only commercialized gene therapy 
in the Western world is Glybera (alipogene 
tiparvovec) from uniQure, which is based on 
AAV1 and has been used to treat hereditary 
lipoprotein lipase deficiency (LPLD).

Biomanufacturing considerations

Gene therapy applications require large-scale 
processes that can generate highly pure and 
biologically active vectors that fulfill regulatory 
chemistry, manufacturing, and controls (CMC) 
requirements. They should be robust, scalable, 
cost-effective, and ideally applicable to a large 
variety of viral vectors (6). As Figure 1 shows, viral 
vector production consists of upstream and 
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Figure 1: Viral vector production
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downstream processes comprising several steps, 
depending on the viral properties of a product.

Upstream processing of virus particles for gene 
therapy vectors entails virus growth and harvesting, 
whereas downstream processing is focused at viral 
vector purification. Notably, downstream 
purification of viral vectors accounts for the 
majority of the overall manufacturing cost, and it 
represents a bottleneck in viral vector 
manufacturing (7). Scalable downstream processing 
contains several steps: clarification (microfiltration), 
capture (ultrafiltration/diafiltration), purification 
(ion-exchange chromatography (IEX) and affinity 
chromatography (AF)), and polishing (size-
exclusion chromatography (SEC) and 
ultrafiltration).

Because each virus has different biochemical and 
physical properties, viral gene-therapy vector 
purification must be tailored accordingly. This 
process requires optimization to preserve virus 
infectivity (closely related to product efficacy and a 
typical release assay) and maximize recovery. The 
decision regarding purification method should take 
characteristics such as virus particle size and 
stability, charge at neutral pH, and relative particle 
stability into consideration (8). You must thoroughly 
understand your purification process to identify 
critical steps that affect final-product quality. 

Viral Vector Purification methods

Several approaches can be taken for viral gene 
therapy vector purification, including 
ultracentrifugation and membrane and column 
chromatography methods. The latter two are 
amenable to scale-up. 

Ultracentrifugation is used mainly at laboratory 
scale and is not scalable because available rotors 
usually have only small-volume capacities. It 
frequently results in a loss of active viral particles, 
which could be attributed to viral aggregation and 
shear forces among other possible explanations (8). 
Compared with membrane and column 
chromatography, ultracentrifugation is challenging 
to automate. Its use can increase processing times 
and the risk of product degradation.  

Although column chromatography tools are 
scalable and routinely used for purifying 

Table 1: Viral vector overview (46–50)

Viral Vector Example Advantages Disadvantages
Manufacturing 
Considerations

Retroviruses Oncoretroviruses, 
spumaviruses, 
VSV

Effective integration into 
target cell chromatin, 
clinical phase

Limited ex vivo application, 
Insertional mutagenesis

Amenable to RCR-free scale-
up and banking

Lentiviruses VSV-
pseudotyped, 
HFV

Efficiently transduce CNS 
cells, long-term transgene 
expression, application in 
adoptive T-cell platforms, 
clinical phase

Insertional mutagenesis, 
preclinical phase, limited 
cassette size

Amenable to large-scale 
clinical production

Adenoviruses Human 
adenoviral 
serotypes (47, 50)

Clinical phase, 
demonstrable efficacy

Pre-existing immunity and 
inflammatory response, 
complexity for manipulation

10-L to 50-L clinical-grade 
production achievable

AAV Human 
parvovirus, AAV-1 
– AAV-6

No known disease 
associated with AAV 
infection, low toxicity, long-
term transgene expression, 
clinical phase

T-cell response, antibody 
neutralization, low DNA 
packaging capacity

DSP complexity

HSV HSV-1 Efficient infectivity for 
multiple cell types

Difficulties with long term 
gene expression, lack of 
patient experience, 
preclinical

Low titers

*AAV = adenoassociated virus, HSV = herpes simplex virus, RCR = replication-competent retrovirus, CNS = central nervous system (including 
neurons and glial cells), VSV = vesicular stomatitis virus, HFV = human foamy virus, DSP = downstream processing

Figure 2: Conventional chromatography compared with 
membrane adsorbers
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biomolecules, they are not well suited for 
purification of larger molecules such as DNA and 
viruses. In such cases, purification typically is 
achieved by diffusion through a 0.1-µm matrix. 

With membrane pores >3 µm, membrane 
adsorbers have become popular tools for purifying 
viruses. They adsorb virus particles to a solid 
phase. Because of their large pore size, membrane 
adsorbers can be operated at significantly faster 
f low rates, therein resulting in significant time 
and cost of goods (CoG) savings (9). Another 
advantage is their possibility of applying mild 
elution conditions, which increases the likelihood 
of preserving virus infectivity (6). Figure 2 
illustrates how virus purification is achieved with 
membrane adsorbers as opposed to using beads.

modes of Purification chromatograPhy

Chromatography can be divided further into four 
modes, each achieving virus purification by using 
a different mechanism. Purification through IEX 
is based on the net charge of proteins located on 
the outside of the viral capsid. AF exploits 
interactions between a matrix-coupled receptor or 
ligand with the viral capsid. SEC (gel filtration) 
separates viruses from DNA, capsids, and proteins 
according to size. And hydrophobic-interaction 

chromatography (HIC) binds viral capsid proteins 
to a matrix through hydrophobic interaction using 
an aqueous solvent (10).

modes of choice Based on Vector class

Because each vector class has specific 
characteristics, certain purification modes are apt 
to function more effectively (Table 2). For the 
purification of adenoviruses, namely Ad5, all 
aforementioned chromatographic methods can be 
used. Because Ad viruses are negatively charged at 
a neutral pH, various anion-exchange adsorbents 
can be used for their purification. 

IEX using anion exchangers also has been 
reported for several AAVs (11). Immobilized-metal 
affinity chromatography (IMAC) is another 
method by which Ad can be purified. That 
approach is based on binding Ad particles to 
charged zinc ions bound to a column. That method 
provides several options for purifying AAVs, 
exemplified by heparin affinity chromatography, 
which is particularly suited for AAV2 purification 
(12). SEC is a suitable method for polishing Ad and 
AAV5, and HIC purifies Ad particles with high 
concentrations of ammonium sulfate among other 
salts (13). The latter method has yet to be described 
for the purification of AAV serotyes (10).

Table 2: Vector purification chromatography products

Viral Vector Purification Phase Proprietary Chromatography Product Ref.
Ad5 IEX Column resin Fractogel DEAE (EMD Millipore); Q Sepharose XL, Source Q15, 

Streamline Q XL (GE Healthcare); CHT ceramic hydroxyapatite (Bio-Rad)
17–24

SEC Column resin Toyopearl HW-75F (Tosoh); Superdex 200, Sephacryl,S-400HR, and 
Sephacryl S-500 (GE Healthcare Life Sciences)

AF Column resin TosoHaas chelate Zinc
AAV1 IEX Column resin POROS HQ (Thermo Fisher), HiTrap Q (GE Healthcare Life Sciences) 25–27

AF Column resin AVB Sepharose HP (GE Healthcare Life Sciences)
AAV2 IEX Column resin Q-Sepharose, Source 15Q, POROS HQ, HiTrap Q, POROS PI, MacroPrep 

DEAE (Bio-Rad); UNO S1(Bio-Rad), Fractogel SO3, POROS 50HS, SP 
Sepharose HP, CHT ceramic hydroxyapatite

27–39

AF Column resin A20 Mab coupled to HiTrap-Separose and AVB, Sepharose HP
POROS HE/P, POROS HE1/M, HiTrap Heparin, Cellufine sulfate resin (JNC)

AAV4 IEX Column resin Sepharose HP 29
AAV5 IEX Column resin Source 15Q, Mono Q HR, POROS HQ, HiTrap Q, POROS PI, SP 

Sepharose HP; Sartobind Q, Mustang Q (Pall), Sartobind S, Mustang S
27, 29, 
37–40

AF Membrane Mucin-Sepharose
SEC Column resin Superdex 200 (GE Healthcare Life Sciences)

AAV6 IEX Column resin HiTrap Q HP 41
AAV8 IEX Membrane Mustang Q, Sartobind Q, Sartobind STIC, Mustang S, Sartobind S, 42

Baculovirus IEX Membrane Sartobind D, Sartobind S, Mustang S 43, 44
SEC Column resin Sepharose CL-4B

Lentivirus IEX Column resin HiTrap Q and Fractogel TMAE 45–47
IEX Membrane Sartobind Q, Sartobind STIC, Mustang Q, Sartobind D

AF Column resin Fractogel Heparin

IEX = ion-exchange chromatography; SEC = size-exclusion chromatography, AF = affinity chromatography
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Because of their negative charge, lentiviruses are 
routinely purified using membrane adsorbers and 
AEX tools based on columns used in a capture step. 
This step varies the most among different viral 
vector purification groups. Lentiviruses also can be 
purified by using heparin affinity chromatography, 
but it introduces an animal-derived reagent that 
should be elminated in large-scale gene-therapy 
manufacturing (14). Finally, baculoviruses are 
commonly purified using membrane-based anion 
exchangers in the capture step, anion-exchange 
membrane adsorbers, and SEC. 

Progress, But Work remains 
The selection of purification technologies in gene 
therapy bioprocessing is critical to end-product 
quality and CoG and very much a multifactorial 
process. Although platform bioprocesses are 
emerging for gene therapy bioprocessing, they are 
not yet established as such. Each vector requires 
thorough characterization and process 
development. However, classical large-scale 
purification technologies (particularly 
chromatographic approaches) are highly amenable 
to gene therapy bioprocessing. As such, this 
emerging industry would be well served to seek to 
unite emerging basic science expertise in genetic 
engineering approaches with established 
bioprocessing skills and technologies. 

Tools and technologies required to build a 
sustainable and profitable gene-therapy industry 
are within our grasp. But the challenge at hand is 
determining how to configure them optimally to 
accelerate development of life-saving and 
efficacious gene therapies to the clinic, with data 
packages that pass regulatory muster and a cost 
that providers can afford.
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