

Innrimelur 3 Akranes

Heilbr.eftirlit Vesturlands

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Sími: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR

Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

Síða 1 af 1

Sýni Nr. R15001340001 Vatn

 Sýnatökudagsetning:
 20/01/2015

 Móttekið:
 20/01/2015

 Rannsakað:
 20/01/2015

Tegund sýnis	:	Neysluvatn / Geislað (u.v. Ljós) vatn
Sýnatökustaður	:	Akranes
Auðkenni	:	4031/1/Geislahús Akranes
Tilefni sýnatöku	:	Reglubundið eftirlit
Aðrar upplýsingar	:	Hitastig við móttöku: 7°C

Hitastig við sýnatöku: 4°C

Skýringar

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	0	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVA1)	7,20	ISO 10523:2012
**Ammoníak,NH4-N(mg/l)(EVA6)	<0,05 mg/L	HACH, DR/2000 SP
**Grugg	<0,10 NTU	IST EN ISO 7027:1999
**Leiðni (EVA3)	120 µS/cm	ISO 7888:2012

Mat sýnis

Stenst gæðakröfur skv. reglugerð 536/2001

Reykjavík,

23. janúar, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290. Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Innrimelur 3 Akranes

Heilbr.eftirlit Vesturlands

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Sími: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

> Síða 1 af 1

Sýni Nr. R15008130010 Vatn

Sýnatökudagsetning: 17/03/2015 Móttekið: 18/03/2015 Rannsakað: 18/03/2015

:	Neysluvatn / Geislað (u.v. Ljós) vatn
:	(Borgarbyggð) Afranes
:	4034/10/Jaðarsbakkar Íþr.hús eldhús
:	Reglubundið eftirlit
:	Hitastig við móttöku: 7°C
	:

:

Aðrar upplýs Skýringar

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	2	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVA1)	7,20	ISO 10523:2012
**Ammoniak,NH4-N(mg/l)(EVA6)	<0,05 mg/L	HACH, DR/2000 SP
**Grugg	0,66 NTU	IST EN ISO 7027:1999
**Leiðni (EVA3)	130 µS/cm	ISO 7888:2012
Mat gýnig		

Mat sýnis

Stenst gæðakröfur skv. reglugerð 536/2001

10/2115

Reykjavík,

23. mars, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð.

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290.

Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Sími: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR

Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

Síða 1 af 1

Heilbr.eftirlit Vesturlands 5503992299 Innrimelur 3 Akranes

Sýni Nr. R15016360004 Vatn

 Sýnatökudagsetning:
 16/06/2015

 Móttekið:
 16/06/2015

 Rannsakað:
 16/06/2015

Tegund sýnis	:	Neysluvatn / Geislað (u.v. Ljós) vatn
Sýnatökustaður	:	Akranes
Auðkenni	:	4657/IV/Akr/Geislahús Akranesi
Tilefni sýnatöku	:	Reglubundið eftirlit
Aðrar upplýsingar	:	Hitastig við móttöku: 10°C
		Ástand vatnsbóls: Góður
		Frágangur vatnsbóls: Lokað

Skýringar

Hitastig við sýnatöku: 6,3°C

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Enterokokkar 100 ml síun (ÖVA12)	0	ISO 7899-2, 1st ed. 2000
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	0	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVA1)	7,30	ISO 10523:2012
**Grugg	0,10 NTU	IST EN ISO 7027:1999
**Leiðni (EVA3)	110 µS/cm	ISO 7888:2012
Mat sýnis		

Stenst gæðakröfur skv. reglugerð 536/2001

monstature 10/8/15

Reykjavík,

22. júní, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð.

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290. Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Innrimelur 3 Akranes

Heilbr.eftirlit Vesturlands

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Sími: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

Síða 1 af 1

Sýni Nr. R15022280005 Vatn

 Sýnatökudagsetning:
 13/08/2015

 Móttekið:
 13/08/2015

 Rannsakað:
 13/08/2015

Tegund sýnis	:	Neysluvatn / Geislað (u.v. Ljós) vatn
Sýnatökustaður	:	Akranes
Auðkenni	:	4048/V-V/HB Grandi
Tilefni sýnatöku	:	Reglubundið eftirlit
Aðrar upplýsingar	:	Hitastig við móttöku: 5°C

Skýringar

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	1	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVA1)	7,25	ISO 10523:2012
**Ammoníak,NH4-N(mg/l)(EVA6)	<0,05 mg/L	HACH, DR/2000 SP
**Grugg	<0,10 NTU	IST EN ISO 7027:1999
**Leiðni (EVA3)	110 µS/cm	ISO 7888:2012

Mat sýnis

Stenst gæðakröfur skv. reglugerð 536/2001

min steral 18/8'2015

Reykjavík,

17. ágúst, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð.

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290.

Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Innrimelur 3 Akranes

Heilbr.eftirlit Vesturlands

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Sími: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

Síða 1 af 1

Sýni Nr. R15026820006 Vatn

 Sýnatökudagsetning:
 22/09/2015

 Móttekið:
 22/09/2015

 Rannsakað:
 22/09/2015

:	Neysluvatn / Geislað (u.v. Ljós) vatn
:	Geislahús OR á Akranesi, Akranes
:	4050/6/Akranes - Geislahús
:	Reglubundið eftirlit
:	Hitastig við móttöku: 9°C
	Ástand vatnsbóls: Góður
	Frágangur vatnsbóls: Lokað
	:

:

Skýringar

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	0	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVA1)	7,35	ISO 10523:2012
<pre>**Ammoniak,NH4-N(mg/l)(EVA6)</pre>	<0,05 mg/L	HACH, DR/2000 SP
**Grugg	<0,10 NTU	IST EN ISO 7027:1999
**Leiðni (EVA3)	110 µS/cm	ISO 7888:2012

Mat sýnis

Stenst gæðakröfur skv. reglugerð 536/2001

Reykjavík,

25. september, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð.

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290.

Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Innrimelur 3 Akranes

Heilbr.eftirlit Vesturlands

Matís ohf Rannsóknarstofa Vínlandsleið 12 113 Reykjavík Simi: (354)-422 5000 Fax:(354)-422 5001

RANNSÓKNANIÐURSTÖÐUR Útgefnar af faggildri rannsóknastofu Report issued by Accredited laboratory

Síða 1 af 1

Sýni Nr. R15032160003 Vatn

 Sýnatökudagsetning:
 13/11/2015

 Móttekið:
 13/11/2015

 Rannsakað:
 13/11/2015

:	Neysluvatn / Geislað (u.v. Ljós) vatn
:	Sjá auðkenni
:	280/3/Akranes Geilsahús
:	Reglubundið eftirlit
:	Hitastig við móttöku: 7°C
	:

:

Skýringar

Örverurannsóknir	Mæligildi	Heimild
E.coli 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Gerlafjöldi við 22°C í 1 ml (ÖVA5)	0	SM, 21. ed.2005, 9215B & ISO 6222:199
Kólígerlar í 100 ml síun (ÖVA3)	0	ISO 9308-1:2000,TC 2007
Eðlis- og Efnarannsóknir	Mæligildi	Heimild
**Sýrustig (pH) (EVAl)	7,05	ISO 10523:2012
**Ammoníak,NH4-N(mg/l)(EVA6)	<0,05 mg/L	HACH, DR/2000 SP
**Grugg	0,13 NTU	IST EN ISO 7027:1999
**Leiôni (EVA3)	120 µS/cm	ISO 7888:2012

Mat sýnis

Stenst gæðakröfur skv. reglugerð 536/2001

Reykjavík,

16. nóvember, 2015

Þessar rannsóknaniðurstöður eru samþykktar með rafrænni undirskrift:

Hrólfur Sigurðsson hrolfur.sigurdsson@matis.is

mois/phild 24/11/15 80

** Ekki faggildar niðurstöður

Niðurstöður má eingöngu nota í heild sinni, nema rannsóknastofa gefi skriflegt leyfi til annars.

Niðurstöður gilda aðeins um það/þau sýni sem var/voru rannsakað/ rannsökuð.

Mælióvissa örverumælinga byggir á um það bil 95% öryggismörkum (K=2) og er hægt að nálgast upplýsingar um hana með því að hafa samband við rannsóknastofuna.

Rannsóknarstofan uppfyllir kröfur NELAC staðals New York State Department of Health (NYSDOH), NY auðkenni: 11290. Ef frekari upplýsinga er óskað hafið samband við undirritaðan eða Franklín Georgsson, sviðsstjóra.

Report

Page 7 (12)

T1511787

YOYMMR18GW

LabID 01068113	32					
Analysis	Results	Uncertainty (±)	Unit	Method	Issuer	Sign
Ca	5.81	0.45	mg/l	1	R	AKR
Fe	0.00207	0.00058	mg/l	1	H	AKR
K	0.429	0.039	mg/l	1	R	AKR
Mg	2.22	0.15	mg/l	1	R	AKR
Na	11.0	0.8	mg/l	1	R	AKR
Si	6.60	0.41	mg/l	1	R	AKR
Al	1.93	0.64	µg/l	1	H	AKR
As	<0.1	0.01	µg/l	1	Н	AKR
Ba	0.0257	0.0133	µg/l	1	H	AKR
Cd	< 0.002	0.0100	µg/l	1	H	AKR
Co	0.0163	0.0108	μg/l	1	H	AKR
Cr	0.385	0.078	μ <u>g</u> /l	1	H	AKR
Cu	0.429	0.085	μg/l	1	H	AKR
Hg	<0.002	0.000	µg/l	1	F	AKR
Mn	0.145	0.059		1	г Н	AKR
Мо	<0.05	0.009	µg/l	1		
Ni	2.96	0.54	µg/l		H	AKR
P	the second s	0.51	µg/l	1	H	AKR
P Pb	15.1	2.8	µg/l	1	H	AKR
	The second statement of the second statement with the second statement and a second statement as a se	0.0099	µg/l		H	AKR
Sr	3.26	0.35	µg/l	1	R	AKR
Zn	2.90	0.53	µg/l	1	Н	AKR
V	3.42	0.68	µg/l	1	Н	AKR
Sb	<0.01		µg/l	2	Н	AKR
B	<10		µg/l	3	R	AKR
S	0.971	0.092	mg/l	4	R	AKR
Se	<0.5		µg/l	5	Н	AKR
benzene	<0.20		µg/l	6	1	STGR
toluene	<0.20		µg/l	6	1	STGR
ethylbenzene	<0.20		µg/l	6	1	STGR
m,p-xylene	<0.20		µg/l	6	1	STGR
o-xylene	<0.20		µg/l	6	1	STGR
xylenes, sum*	<0.20		µg/I	6	1	STGR
dichloromethane	<2.0			7	4	OTOD
1,1-dichloroethane	<0.10		µg/l	7	1	STGR
1.2-dichloroethane	<0.10		µg/l	and the second sec	1	STGR
,			µg/l	7	1	STGR
trans-1,2-dichloroethene	< 0.10		µg/l	7	1	STGR
cis-1,2-dichloroethene 1.2-dichloropropane	<0.10		µg/l	7	1	STGR
.,	<1.0		µg/l	7	1	STGR
tetrachloromethane	<0.10		µg/l	7	1	STGR
1,1,1-trichloroethane	< 0.10		µg/l	7	1	STGR
1,1,2-trichloroethane	<0.20		µg/l	7	1	STGR
trichloroethene	<0.10		µg/l	7	1	STGR
tetrachloroethene	<0.20		µg/l	7	1	STGR
vinylchloride	<1.0		µg/l	7	1	STGR
naphthalene	<0.20		µg/l	8	1	STGR
acenaphthylene	<0.10		µg/l	8	1	STGR
acenaphthene	<0.0070		µg/l	8	1	STGR
fluorene	<0.010			8	1	STGR
phenanthrene	<0.010		µg/l	8	the second se	
anthracene	<0.040		µg/l	8	1	STGR
fluoranthene			µg/l		1	STGR
pyrene	<0.0050 ~ <0.0050		µg/l µg/l	8	1	STGR STGR

ALS Scandinavia AB Box 700 182 17 Danderyd Sweden Web: <u>www.alsglobal.se</u> E-mail: <u>info.ta@alsglobal.com</u> Tel: + 46 8 52 77 5200 Fax: + 46 8 768 3423

The document is approved and digitally signed by

Ulrika Karlsson

2015.06.25 14:19:59 ALS Scandinavia AB Client Service

Client Service ulrika.karlsson@alsglobal.com

Report

Page 8 (12)

YOYMMR18GW

Your ID R15-1636-4/						
LabID 010681132						
Analysis	Results	Uncertainty (±)	Unit	Method	Issuer	Sign
benzo(a)anthracene	<0.0030		µg/l	8	1	STGR
chrysene	<0.0070		µg/l	8	1	STGR
benzo(b)fluoranthene	<0.0040		µg/l	8	1	STGR
benzo(k)fluoranthene	<0.0020		µg/l	8	1	STGF
benzo(a)pyrene	<0.0020		µg/l	8	1	STGR
dibenzo(ah)anthracene	<0.0020		µg/l	8	1	STGR
benzo(ghi)perylene	< 0.0030		µg/l	8	1	STGR
indeno(123cd)pyrene	< 0.0030		µg/l	8	1	STGR
PAH, sum 16*	<0.20		µg/l	8	1	STGR
PAH, sum carcinogenic*	<0.012		µg/l	8	1	STGF
PAH, sum non carcinogenic*	<0.20		µg/l	8	1	STGF
PAH, sum 4*	<0.0060		µg/l	8	1	STGF
PAH, sum L*	<0.20		µg/l	8	1	STGF
PAH, sum M*	<0.040		µg/l	8	1	STGR
PAH, sum H*	< 0.013		µg/l	8	1	STGR
trichloromethane	<0.30		µg/l	9	1	STGR
tribromomethane	<0.20		µg/l	9	1	STGF
dibromochloromethane	<0.10		µg/l	9	1	STGF
bromodichloromethane	<0.10		µg/l	9	1	STGF
trihalomethanes, sum*	<0.35		µg/l	9	1	STGF
ammonium	<0.026		mg/l	10	1	STGF
chloride	16.0	2.40	mg/l	11	1	STGF
colour	10		mgPt/l	12	2	JEBE
sulphate	3.52	0.529	mg/l	13	1	STGF
TOC	<0.50		mg/l	14	1	STGF
nitrate	0.310	0.043	mg/l	15	3	ULKA
nitrite	<0.01	an diga di nan baga napar kata kata kata kata kata kata na kata di kata di kata di kata di kata di kata di kat	mg/l	16	2	JEBE
fluoride	<0.200		mg/l	17	1	STGF
CN total	< 0.005		mg/l	18	1	STGF

ALS Scandinavia AB Box 700 182 17 Danderyd Sweden Web: <u>www.alsglobal.se</u> E-mail: <u>info.ta@alsglobal.com</u> Tel: + 46 8 52 77 5200 Fax: + 46 8 768 3423 The document is approved and digitally signed by

Ulrika Karlsson

2015.06.25 14:19:59

Page 9 (12)

T1511787

YOYMMR18GW

* indicates unaccredited analysis.

	Method specification						
	Package V-2.						
	Determination of metals without digestion.						
	The measurement was carried out according to EPA-method 200.7(mod), SS EN ISO 11885(mod) (ICP-AES) and EPA-method 200.8(mod), SS EN ISO 17294-1,2(mod) (ICP-SFMS). Analysis of Hg with AFS according to SS-EN ISO 17852:2008.						
	Special information for added metals to the package:						
	W; the sample must not be acidified prior to analysis.						
	S; the sample has been stabilized with H2O2.						
2	Determination of Sb without digestion.						
	The measurement was carried out according to EPA-method 200.7(mod), SS EN ISO 11885(mod) (ICP-AES)						
	or EPA-method 200.8(mod), SS EN ISO 17294-1,2(mod) (ICP-SFMS).						
	Pile Directory and						
}	Determination of B without digestion.						
	The measurement was carried out with either ICP-AES according to EPA-methods 200.7 and SS EN ISO 11885 or						
	with ICP-SFMS according to EPA-method 200.8 and SS EN ISO 17895 or						
	with for -or we according to EFA-filetiou 200.0 and 55 EN ISO 1/284-1.						
	Determination of S, Sulfur, without previous digestion.						
	Stabilisation with H2O2.						
	The sample has been acidified with 1 ml nitric acid (Suprapur) per 100 ml.						
	This is not done if the sample was already acidified previous to the arrival at the laboratory.						
	The measurement was carried out according to EPA-method 200.7(mod), SS EN ISO 11885(mod) (ICP-AES)						
	or EPA-method 200.8(mod), SS EN ISO 17294-1,2(mod) (ICP-SFMS).						
	Protected (C) (C) Sec. 3						
;	Additional metals						
;	Package OV-5.						
2							
	Determination of monocyclic aromatics (BTEX) according to method based on US EPA 624, US EPA 8260, EN ISO						
	10301, MADEP 2004, rev. 1.1.						
	Measurement is performed with GC-FID and GC-MS.						
	Rev 2013-05-1						
	Package OV-6.						
	Determination of chlorinated aliphates including vinylchloride according to method based on US EPA 624, US EPA						
	8260, EN ISO 10301, MADEP 2004, rev.1.1 The measurement is performed with GC-FID and GC-MS.						
	DS2 GUIDENTS						
8	Package OV-1.						
	Determination of polycyclic aromatic hydrocarbons, PAH (EPA-16) according to method based on US EPA 550						
	Determination of polycyclic aromatic hydrocarbons, PAH (EPA-16) according to method based on US EPA 550						
	Determination of polycyclic aromatic hydrocarbons, PAH (EPA-16) according to method based on US EPA 550 The measurement is performed by HPLC with flourescence and PDA detection.						
	The measurement is performed by HPLC with flourescence and PDA detection.						
	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene						
	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene.						
	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene						
	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene.						
AL	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene. Sum 4 PAH: benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene and						
	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene. Sum 4 PAH: benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene and Scandinavia AB Web: www.alsglobal.se The document is approved and Ulrika Karlsson						
AL	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene. Sum 4 PAH: benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene and S Scandinavia AB Web: www.alsglobal.se x 700 The document is approved and Ulrika Karlsson 2015.06.25 14:1						
AL Bo 18	The measurement is performed by HPLC with flourescence and PDA detection. PAH carcinogenic are benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene dibenzo(ah)anthracene and indeno(1,2,3-c,d)pyrene. Sum 4 PAH: benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene and S Scandinavia AB Web: www.alsglobal.se x 700 The document is approved and Ulrika Karlsson 2015.06.25 14:11						

Page 10 (12)

YOYMMR18GW

	Method specification
	benzo(g,h,i)perylene
	Sum PAH L: naphtalene, acenaphtene and acenaphtylene. Sum PAH M: fluorene, phenanthrene, anthracene, fluoranthene and pyrene Sum PAH H: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene)
	Res (n) 15-00-24
9	Package OV-10. Determination of trihalomethanes according to a method based on US EPA 624, US EPA 8260, EN ISO 10301, MADEP 2004, rev.1.1. The measurement is performed with GC-FID and GC-MS.
10	Spectrophotometric determination of ammonium NH ₄ ,low LOQ, according to method based on CSN EN ISO 11732, CSN EN ISO 13395, CSN EN 13370 and CSN EN 12506. The method includes filtration of turbid samples.
11	Determination of chloride using ion chromatography according to CSN EN ISO 10304-1. The method includes filtration of turbid samples.
	Rev ACL, NY 23
12	Determination of colour according to SS-EN ISO 7887 edition 2, method D.
	Uncertainty (k=2): ±20% at 20 mg Pt/l
13	Determination of sulfate with low LOQ, using ion chromatography according to a method based on CSN ISO 10304- 1&2. The method includes filtration of turbid samples.
14	Determination of TOC with IR detection according to method based on CSN EN 1484 and CSN EN 13370. The method includes filtration of turbid samples.
15	Determination of nitrate, NO ₃ according to SS-EN ISO 10304-1. The measurement is performed with ion chromatography.
16	Determination of nitrite nitrogen according to SS-EN ISO 13395-1 (FIA). Filtration through 0.45 µm filter is included in the method. Uncertainty (k=2)
	Clean water: ±12% at 0.01 mg N/l ±9% at 0.05 mg N/l and ±11% at 0.2 mg N/l Waste water: ±13% at 0.01 mg N/l and ±10% at 0.05 mg N/l and ±12% at 0.2 mg N/l
17	Determination of fluoride using ion chromatography according to CSN ISO 10304-1 and CSN EN 12506. The method includes filtration of turbid samples.

ALS Scandinavia AB Box 700 182 17 Danderyd Sweden Web: <u>www.alsglobal.se</u> E-mail: <u>info.ta@alsglobal.com</u> Tel: + 46 8 52 77 5200 Fax: + 46 8 768 3423

The document is approved and digitally signed by

Ulrika Karlsson

2015.06.25 14:19:59

Page 11 (12)

YOYMMR18GW

	Method specification
18	Spectrophotometric determination of total cyanide according to method based on TNV 757415.
	5e 30 (3.0s 14

	Approver
AKR	Anna-Karin Revell
JEBE	Jenny Belin
STGR	Sture Grägg
ULKA	Ulrika Karlsson

	Issuer ¹
F	The determination is performed using AFS The analysis is provided by ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, Sweden, which is a testing laboratory, accredited by the Swedish accreditation body SWEDAC (Reg.No. 2030).
Η	The determination is performed using ICP-SFMS The analysis is provided by ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, Sweden, which is a testing laboratory, accredited by the Swedish accreditation body SWEDAC (Reg.No. 2030).
R	The determination is performed using ICP-AES The analysis is provided by ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, Sweden, which is a testing laboratory, accredited by the Swedish accreditation body SWEDAC (Reg.No. 2030).
4	The analysis is provided by ALS Laboratory Group, Na Harfê 9/336, 190 00, Prag 9, Czech Rebublic, which is a testing laboratory, accredited by the Czech accreditation body CAI (Reg.No 1163). CAI is a signatory to a MLA within EA, the same LA to which the Swedish accreditation body SWEDAC is also a signatory. The laboratories are located in; Prague, Na Harfê 9/336, 190 00, Praha 9, Ceska Lipa, Bendlova 1687/7, 470 03 Ceska Lipa, Pardubice, V Raji 906, 530 02 Pardubice.
2	The analysis is provided by ALS Scandinavia AB, Box 511, 183 25 Täby, which is accredited by the Swedish accreditation body SWEDAC (Reg.No. 2030).
3	The analysis is provided by AK Lab AB, Getängsvägen 29, 504 68 Borås, Sweden, which is a testing laboratory, accredited by the Swedish accreditation body SWEDAC (Reg.No. 1790).

The uncertainty is given as extended uncertainty (according to the definition in "Guide to the Expression of Uncertainty in Measurement", JCGM 100:2008 Corrected version 2010) calculated with a coverage factor of 2, which gives a confidence **level of approximately 95%**.

ALS Scandinavia AB Box 700 182 17 Danderyd Sweden

Web: <u>www.alsglobal.se</u> E-mail: <u>info.ta@alsglobal.com</u> Tel: + 46 8 52 77 5200 Fax: + 46 8 768 3423 The document is approved and digitally signed by

Ulrika Karlsson

2015.06.25 14:19:59

¹ The technical unit within ALS Scandinavia where the analysis was carried out, alternatively the subcontractor for the analysis.

Page 12 (12)

YOYMMR18GW

T1511787

The uncertainty from subcontractors is often given as extended uncertainty calculated with a coverage factor of 2. Contact the laboratory for further information.

This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results apply only to the material that has been identified, received, and tested. Regarding the laboratory's liability in relation to assignment, please refer to our latest product catalogue or website http://www.alsglobal.se

The digitally signed PDF file represents the original report. Any printouts are to be considered as copies.

ALS Scandinavia AB Box 700 182 17 Danderyd Sweden Web: <u>www.alsglobal.se</u> E-mail: <u>info.ta@alsglobal.com</u> Tel: + 46 8 52 77 5200 Fax: + 46 8 768 3423

The document is approved and digitally signed by

Ulrika Karlsson

2015.06.25 14:19:59 ALS Scandinavia AB Client Service ulrika.karlsson@alsglobal.com