WSIP — Web Service SIP Endpoint for Converged
Multimedia/Multimodal Communication over IP

Feng Liu, Wu Chou, Li Li, and Jenny Li
Avaya Labs Research, 233 Mt. Airy Road, Basking Ridge, NJ 07920, USA

{fliul,wuchou, lli5, jjli} @avaya.com

ABSTRACT

We present an approach for converged communication
services over IP, based on the concept of WSIP (Web
Service SIP). In our approach, each WSIP node is both a
SIP endpoint that communicates in the SIP world through
SIP signaling, and a web service (SOAP) node that
provides a native and generic service integration
environment for binding SIP based communication in
web services. The combination of SIP with web service
provides a new converged communication paradigm. It
allows dynamic service discovery and binding that
integrate SIP as a component in the business transaction.
The clear separation of service integration environment
and SIP signaling in our approach maintains the
simplicity and efficiency of the existing SIP protocol,
while leverages the power of both methods in IP based
communication services. The ubiquitous service
integration nature of web service provides a disciplined
solution to maintain and update large number of SIP
endpoints from different installation bases. It enables
dynamic monitoring, repairing, and updating SIP UA
endpoints, which is essential to the success of VolP using
SIP. The proposed approach was implemented in a
prototype research system, and several advantages of
WSIP over the existing approaches are observed.

Keywords
Web service, Session Initiation Protocol, service
integration

1. INTRODUCTION

SIP (Session Initiation Protocol) [1] is one of the most
important protocols for VolP (voice over IP)
communication. The explosive growth of IP network and
the need of voice service over IP as an alternative to
PSTN (Public-Switched Telephone Network) greatly
accelerate the acceptance of SIP as the primary method
for the next generation VoIP in the converged
communication environment.

From internet protocol stack point view, SIP is an
application layer protocol for VoIP services. It
incorporates elements from two most important
application layer protocols of the internet, HTTP (Hyper
Text Transport Protocol), and SMTP (Simple Mail
Transport Protocol). It borrows from HTTP the concept

of the request/response client-server design and the use of
uniform resource locators (URLSs). The signaling part of
SIP reuses the SMTP headers, such as To, From, Subject,
Date, etc., and it inherits the basic SMTP simple text
encoding scheme and header style. The VolP call in SIP
can be initiated and setup by some basic request/response
methods, such as the original six methods, INVITE,
REGISTER, BYE, ACK, CANCEL, and OPTION [1].

Despite the success of SIP as an efficient VVolP protocol,
SIP is under constant expansion in order to support new
communication services which are not covered in its
original scope, such as messaging [9], authentication,
presence, etc. In order to integrate SIP for converged
communication services, there is a critical need for an
extensible service integration environment that allows
applications to integrate SIP as part of the business
transaction process. The simple text encoding scheme and
SMTP type headers in SIP can be both its strength and
limitation. The advents of XML based protocols for
switching, call control, and service monitoring, such as
CSTA[4,5,6] and CCXML[10], have made this issue even
more acute.

Web service [2,3] is a major development for providing
services over IP. It is based on the concept of using a
structured XML document, in the form of a standard
based SOAP message [7, 8], to access, control and
integrate various services remotely for complex business
transactions. In web service world, the services for
business transactions are linked together through a
collection of web service SOAP nodes. SOAP provides
an extensible and generic XML framework for XML
based service function calls and data exchange format.
The binding of SOAP with HTTP makes web service
ubiquitous, accessible from anywhere through the
internet.

However, SIP and web services are rarely cross each
other in the past, and each method tries to address its
needs from its own domain through its own extensions.
This leads to some serious issues, and the strengths of
both methods are not fully leveraged. In this paper, we
describe a new approach for converged communication
services over IP based on the concept of WSIP (Web
Service SIP). In WSIP paradigm, each WSIP node is both
a SIP endpoint that communicates in the SIP world
through SIP signaling, and a web service (SOAP) node

that provides a native and generic service integration
environment for binding SIP based communication in
web services.

WSIP is a fundamental departure from the prior practice
of mixing service integration environment in SIP headers
and signaling. It takes the separation of signaling and
media transmission used in SIP to the next level of
separating service integration from signaling. WSIP
provides an extensible and modularized three-tier
infrastructure among service integration, signaling, and
media transmission. WSIP is a combination of SIP and
Web Services and a new paradigm for converged
communication over IP.

WSIP provides tremendous flexibilities for integrating
SIP in business transactions. The light weight protocol
and efficient media stream transmission in SIP
complement the message based web services, where
carrying media stream in SOAP messages can be costly.
On the other hand, SIP protocol standards as well as the
customized SIP applications are under constant revision
and extension, leading to various versions of SIP user
agent (UA) endpoints. The interoperability between SIP
UA endpoints has become a serious issue for VolP using
SIP. The ubiquitous service integration nature of web
service provides a disciplined solution to maintain and
update large number of SIP endpoints from different
installation bases. The web service mechanism in WSIP
for dynamically discover and update SIP UA endpoints is
essential to the success of VoIP using SIP.

This paper is organized as follows. We discuss the related
work in Section 2. The approach of WSIP and the
structure of WSIP terminal are presented in Section 3. We
describe a prototype WSIP terminal implementation in
detail and address the issues of using web service in a
situation that requires the maintenance of the service
state, such as in a SIP UA. In Section 4, we study the
event notification and communication service model
under the paradigm of WSIP. The integration of WSIP
with XML based switching, call control and service
applications, such as CSTA and CCSML, is discussed in
Section 5. The proposed WSIP approach has been
implemented in a research prototype system. The
performance advantages of the proposed WSIP approach
are highlighted in Section 6.

2. RELATED WORK

SIP protocol defines a basic set of request message
methods, such as INVITE, INFO, ACK, etc. These
request messages in SIP are used to initialize and set up
calls through the signal channel. Numerical values are
used to indicate the status of request/response (e.g. 200
indicate O.K., etc.), when two parties in a peer-to-peer
communication negotiate a session. The media
transmission in SIP is carried over by a separate channel
using real time media transport protocol such as RTP.

The separation of signaling and media transmission in SIP
has the advantage of being a light weight application level
protocol for fast call setup and termination, because no
real media is transmitted through the call setup SIP
messages. This design is very different from HTTP,
which is based mainly on two fundamental methods GET
and POST. The rich content and control in HTTP are
conveyed through the structured XML/HTML
documents, which have an extensible markup language
structure. In order to support messaging, MESSAGE
requests are added to the SIP protocol. MESSAGE
requests are very different from other SIP requests in that
they carry the media, in the form of IM (Instant
Messaging), as payload [9]. This broke the convention
that SIP payloads carry signal information not the media.
It has caused concern that when a SIP infrastructure is
shared between a call signaling and 1M, the IM traffic
may interfere with call signaling traffic. Congestion
control can be an issue. However, since MESSAGE
traffic patterns are likely to be different from other SIP
methods, MESSAGE request is treated as a special
exception.

In order to integrate SIP in business transactions through
XML, efforts are made to embed XML based service
control/response in the original SIP request messages,
such as INVITE, INFO, SUBSCRIBE, NOTIFY, as part
of its message body. This pragmatic approach encounters
various problems. For example, the use of INFO method
to carry XML service control\response is discouraged,
because INFO in SIP is used by a SIP UA to send call
signaling information to another SIP UA, and it lacks
semantics to support such use. One other disadvantage is
that it is not analogous to the existing use of INFO for
carrying a peer-to-peer communication protocol.

Another attempt is to embed XML based service
control/response in the SDP (session description protocol)
part of SIP INVITE. However, SDP is more of a
description syntax than a protocol. It does not provide a
full-range of control/response negotiation capability. SDP
is not designed to be easily extensible, and parsing rules
are strict. This again departs from the existing use of SDP
in INVITE. Moreover, the receiving SIP UA can ignore
the INVITE SDP and respond with its own SDP for call
setup.

Direct embedding service control/response in the existing
SIP signaling has some serious drawbacks. First, it
deviates from the existing use of the SIP protocol, and
departs from the intent of being a light weight application
layer protocol that separates signaling from media. The
embedded media or service control/response can interfere
with the original SIP signaling. Because of lacking an
XML standard based extensible structure, there is a
serious danger of introducing inconsistencies among SIP
UAs, and service interoperability can be in real risk.
Secondly, there is no standard service integration

environment for SIP endpoints. One consequence of
direct embedding service control in SIP signaling is that
for an application to drive a SIP endpoint, it has to have
in itself a SIP endpoint, because all service integration
controls are communicated through SIP call control
signaling. This may not always be feasible and incur
unnecessary overhead, especially for XML based
applications.

Our approach of WSIP, on the other hand, provides a
unified interface for service integration with SIP. The use
of SOAP in WSIP provides an extensible and well-
formed structure for remote service control and data
exchange. The unification of SIP with Web Service
provides a new converged communication paradigm. It
allows dynamic service discovery, repair/update, and
binding that integrate SIP as a component in the business
transaction. The clear separation of service integration
environment and SIP signaling in our approach maintains
the simplicity and efficiency of the existing SIP protocol
and leverages the power of both methods for converged
communication services over IP.

3. WSIP (WEB-SERVICE SIP)

The conventional SIP endpoints has two major
components, a SIP user agent (UA) and an application
that is built on top of the SIP UA, such as a SIP phone
based application, an IM application, etc. The SIP UA
handles the low level call control and media
communication. It exposes a set of APIs to its application.
In the SIP world, the application interacts with other users
or applications by calling the SIP UA APIs that
communicate with other SIP UAs through SIP signaling.
Applications are tied to the particular SIP UA APIs, and
constrained to operate within the support of SIP protocol.

On the other hand, a web service endpoint is typically a
SOAP node. A SOAP node is both a client and a server. It
listens to the SOAP channel for the incoming SOAP
messages and sends the proper SOAP messages as its
response. Web service is based on a loosely coupled
service model. It separates the service protocol and
application data from the application layer protocol. It
encapsulates the service protocol and application data in a
well-formed SOAP message. SOAP is an XML standard
from W3C. It provides a standard format for XML based
remote procedure call and data exchange. This allows
web services to be supported on multiple application layer
protocols, such as HTTP and SMTIP.

Moreover, web service provides a standard service
integration environment through WSDL (web service
description language). It allows dynamic application
service binding between the SOAP message and the
platform service APIs. This leads to a distributive service
model, where multiple services and platforms can be
linked remotely through the exchange of SOAP messages
to perform business transactions.

The key idea behind our WSIP approach is not to further
complicate the SIP signaling protocol, but to expose the
SIP UA as a SOAP node in the world of web service. By
doing so, it separates the signaling and service integration
environment through the loosely coupled web service
model. It provides an extensible and standard based XML
service integration environment through the use of
SOAP/WSDL, which allows easy integration of SIP in
business transactions. In our approach, a WSIP terminal
can be integrated with any authorized application
remotely and in a distributed fashion through the standard
web service method. There is no need to change the SIP
signaling protocol, and it does not require that an
application has to own a SIP UA in order to transmit the
service content and control. The ubiquitous of the service
integration environment is achieved through the binding
of SOAP with HTTP and the common service description
interface of WSDL.

Figure 1 illustrates the communication diagram of WSIP.
As shown in the diagram, two WSIP terminals can
communicate directly using SIP signaling (represented in
solid line). Moreover, two WSIP terminals can also
communicate directly through web service using SOAP.
In addition, the WSIP terminals can communicate with
remote applications that bundles SIP in service directly
through web service channel (represented in doted line).
For example, a SIP phone call to alert the customer of the
arrival of his product order can be initiated by the
application of a remote agent who travels on the road
with only a web connection.

3.1 The Structure of WSIP Terminal

The structure of WSIP terminal is illustrated in Figure 1.
It has four major components: SIP UA, Wrapper Layer
Controller (WLC), SOAP Server, and SOAP Client. The
SIP UA in WSIP is responsible for SIP signaling and
media transmission. It handles functions such as making a
SIP call, answering an inbound SIP call, disconnecting
the call, holding the call, etc., according to the SIP
protocol. It also sends the call related events to WLC,
such as call arrival, call hang-up, media change, etc. The
SIP UA exposes a set of APIs to WLC for basic
communication service using SIP, such as MakecCall,
SendIM, HandupCall, etc. The WLC wraps the API
functions of SIP UA into XML and exposes them as web
services. One embodiment of our WSIP implementations
contains the following web service functions.

1. Receive and parse the SOAP request at the
WSIP SOAP Server.

2. Bind SOAP service request to WLC according to
the WSIP WSDL specification, and execute the
request by calling the corresponding SIP UA
API functions.

3. Receive the SIP event from SIP UA, propagate
the even to WLC.

4. Package the event into SOAP message, and send
the event notification to the application through
the WSIP web service SOAP Client.

5. WSIP system services (described below).

The WSIP system services expose a set of web service
functions for SIP UA configuration, testing, maintenance,
and update. It allows a SIP service application to
dynamically discover and configure the SIP UA
functionalities through SOAP/WSDL web service
interface. The SOAP message for WSIP system services
can contain instructions to WLC with configuration
parameters. For example, the configuration message can
include the maximum number of calls that the SIP UA of
the WSIP terminal is allowed to handle, the media type
and formats that the SIP UA can access, the restriction to
use certain type of media coders by the SIP UA of the
WSIP terminal, a very useful feature to control the
network congestion.

The WSIP system services allow WSIP terminal to be
maintained and updated on demand and dynamically.
System administrators can use web service to install new
version of the SIP UA components through WLC. With
proper authorization, the WLC of WSIP can install new
SIP UA components automatically without user’s
intervention. This capability of WSIP is extremely
important for communication using SIP, because there is
a large installation base of SIP phones, and SIP standard
is under frequent revision. Maintaining the
interoperability between SIP UAs from different
installation bases has become difficult. Most importantly,
the discovery capability of the web service combined with
WSIP system service enables the system administrator to
monitor, discover, update and even repair a WSIP
terminal. The functionalities of WSIP can be published
through the standard web service method, and the WSDL
based service integration environment makes it easy to
create client applications.

3.2 Web Service Implementation in WSIP

Terminal

The web service on WSIP terminal is a stateful web
service. It contains the status of the SIP UA, such as the
number of active calls, the port number that is using, etc.
It also contains the status of each active calls, for
example, session type (Voice, IM), the state of the session
(ringing, call is preceeding), caller ID, starting time, etc.
So it is important to guarantee that all the states can be
kept correctly. The situation is very different from using
the SIP protocol where certain state information can be
carried in the SIP signaling. The GET and POST methods
in HTTP, that carry the web service SOAP messages, are
stateless. It is up to the application to maintain and
manage a stateful transaction. This situation is further
complicated by the multi-thread nature of the WSIP

terminal, where these threads can be initiated by either the
SIP UA or the application through the WSIP terminal
web service.

This requires WSIP web service infrastructure to maintain
a dialogue history registry, and the rule is that if a contact
is initiated or answered by one application, all the
subsequent contact events have to be forwarded to the
same application. For example, when an application
initiated a SIP call through the web service of WSIP, then
all subsequent events of that application have to interact
to the same thread on the SIP UA, until the final call hang
up.

To address these issues, we developed a two-way proxy
web service middleware to manage the many-to-many
two-way connections between the WSIP web service
agent and the application. It consists of the following
technical procedures.

e Use XML condition/action rules to specify
which application to launch based on the contact
events from the SIP UA of WSIP terminal.

e Maintain the web service registry for the contact
from the WSIP SOAP server.

e Maintain the sessions between the external
applications and the applications running on SIP
UA, if necessary.

Each external application web service has a unique
service key, which is a URI, and when a new contact is
routed to WSIP terminal, the event XML includes the
service key, event type and contact description, among
other information. If necessary, the proxy will launch the
specified application, and create a session that maintains
the relationship between the external web service that
submits the application and the state of the application
that is running on the WSIP SIP UA. This process will be
discussed further in the WSIP event notification at
Section 4.

In our implementation of this architecture based on
Microsoft SOAP Toolkit 3.0 [13] and IS web server on
Win2K, we encountered the problem that the proxy is
treated as a stateless object under ISAPI mode. To solve
this issue, we implemented our web service proxy as a
COM+ service that use the Singleton pattern to represent
the session table, so that the session connections between
web service proxy and SIP UA can be maintained through
out the interaction.

Another issue is how to make the web service thread safe.
Since the WSIP web service allow multiple applications
to assess the SIP UA services simultaneously, it is
important for the SIP UA to guarantee the
synchronization. For example, if two sessions are
requesting RTP ports from a Port Manager, it is important
for the Port Manager to use a synchronization method, for
example, the method “mutex”, to make sure that it assigns
different ports to the two sessions.

4. EVENT NOTIFICATION IN WSIP

On WSIP terminal, the application can access the SIP UA
services through a SOAP client, which sends service
request through the web service channel. For example,
the application can make a SIP call by sending an
appropriate SOAP request through the SIP client
according to the WSDL specification of the WSIP
terminal.

In order for application to receive the SIP UA events,
WSIP terminal adopts the event notification mechanism
proposed in Web Service-Notifications [12]. WSIP
terminal, the event producer, provides a SUBSCRIBE
service. This allows the event consumer, SIP application,
to register the event and the event handler that it is
interested in. Such information can be stored in the event
registration table. In order for the SIP UA to send the
event to it, the SIP application first exposes the event
handling function NOTIFY as a web service, then
subscribes the events to SIP UA by sending a SOAP
message through the SOAP client. Inside the SOAP
message it contains the event it is interested in, and the
corresponding event handler (WSDL).

When a subscribed event happens, the WSIP terminal
looks up the registration table, finds the subscribers, and
then sends the event to the subscribers’ web services
using its SOAP client. Inside the SIP application, a
message queue is used to store the event temporarily.
When the SOAP server receives an event, it simply posts
the event to the message queue. Another thread keeps
retrieving the message from the queue, and processing all
the events asynchronously.

To illustrate the operation of WSIP terminal between web
services and SIP signaling, an example call flow is
described in Figure 2. It consists of the following steps.

0. A SIP application subscribes the events
CallArrival, CallHangup, CallAnswered, etc., to
WSIP terminal.

1. When a remote SIP terminal calls the SIP UA, a
SIP INVITE message is received.

2. SIP UA notifies the WLC about the event,
which wraps the event and sends it to the SIP
application.

3. After receiving the CallArrival event, the SIP
application may pick up the call by sending
AnswerCall message to WSIP terminal.

4. SIP UA sends 200 OK to the remote end, and the
call is set up.

5. SIP UA sends CallAnswered event to SIP
application.

6. When SIP application wants to end the call, it
sends HangupCall message to WSIP terminal.

7. SIP UA sends BYE to the remote to disconnect
the call.

8. WSIP terminal then sends CallDisconnected
event to the SIP application.

5. INTEGRATION WITH CSTA XML AND

XML BASED APPLICATIONS

The WSIP in our approach is designed for easy
integration with XML based applications. The
incorporation of SOAP/WSDL web service in WSIP
provides the standard SOAP message method to package
and transport XML based remote procedure calls and
application data from the application. One of important
advances in XML technology is the emergence of XML
based switching and call control environment.

CSTA (Computer Supported Telecommunications
Applications) from ECMA provides a standardized
abstraction layer for applications to perform call and
device control in a business telecommunication
environment. ECMA-348 (CSTA-WSDL) [6] provides a
web services description language specification for
functions in CSTA. An example of CSTA WSDL
application is listed in Table 1.

<?xml version="1.0"
standalone="no" ?>

<SOAP-ENV:Envelope
xmIns:SOAPSDK1="http://www.w3.0rg/2001/XM
LSchema"
xmIns:SOAPSDK2="http://www.w3.0rg/2001/XM
LSchema-instance"
xmIns:SOAPSDK3="http://schemas.xmlsoap.org/
soap/encoding/" xmIns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelop
e/">
<SOAP-ENV:Body SOAP-
ENV:encodingStyle="http://schemas.xmls
oap.org/soap/encoding/">
<SOAPSDKA4:
xmins:SOAPSDK4="
http://www.ecma.ch/standards/ecm
a-323/csta/ed2">

<callToBeAnswered>
<calllD>1878</calllD>
<devicelD>135.10.52.22</devicelD>
</callToBeAnswered>
</SOAPSDKA4: AnswerCall >
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

encoding="UTF-8"

AnswerCall

Table 1 An example of CSTA SOAP message

Our approach of WSIP is native to the call and device
control environment specified by CSTA WSDL, because
WSIP combines the web service with SIP. It allows a
WSIP terminal be easily integrated with a CSTA
application, either as a server or as a client in web service

framework. The infrastructure of WSIP is agnostic to any
particular XML application dialects, and should be
interoperable with other XML based application with
ease.

6. SUMMARY

In this paper, we presented the approach and
implementation of WSIP (Web Service SIP) for
converged communication services. In our approach, each
WSIP node is both a SIP endpoint that communicates in
the SIP world through SIP signaling, and a web service
(SOAP) node that provides a native and generic service
integration environment for binding SIP based
communication in web service based application. The
clear separation of service integration environment and
SIP signaling in our approach maintains the simplicity
and efficiency of the existing SIP protocol, while
leverages the power of both methods for converged
communication services. The ubiquitous service
integration nature of web service provides a disciplined
solution to maintain and update large number of SIP
endpoints from different installation bases. It enables
dynamic monitoring, repairing, and updating SIP UA
endpoints, which is essential to the success of VVolP using
SIP. The proposed approach was implemented in a
prototype research system. Technical issues in the
implementation were studied.

7. REFERENCES

[1] SIP: Session Initiation Protocol,
http://www.ietf.org/rfc/rfc3261.txt?number=3261

[2] SOAP/WSDL, http://www.w3.0rg/2002/ws/

[3] Web Service Architecture, W3C Working Draft,
http://www.w3.0rg/TR/2003/WD-ws-arch-
20030808/

[4] Standard ECMA-269, Services for Computer
Supported Telecommunications Applications
(CSTA) Phase 1. http://www.ecma-
international.org/publications/ standards/Ecma-
269.htm

[5] Standard ECMA-323, XML Protocol for Computer
Supported Telecommunications Applications
(CSTA) Phase 1. http://www.ecma-
international.org/ publications/standards/Ecma-
323.htm

[6] Standard ECMA-348, Web Service Description
Language for CSTA Phase Ill. http://www.ecma-
international.org/ publications/standards/Ecma-
348.htm

[7] SOAP Version 1.2 Part 0: Primer.
http://www.w3.0rg/TR/2003/REC-soap12-part0-
20030624/

[8] SOAP Version 1.2 Part 1: Messaging Framework.
http://www.w3.0rg/TR/2003/REC-soap12-partl-
20030624/

[9] Session Initiation Protocol (SIP) Extension for
Instant Messaging. IETF RFC 3248.
http://www.ietf.org/rfc/rfc3428.txt?number=3428

[10] Voice Browser Call Control: CCXML Version 1.0.
wa3cC Working Draft.
http://www.w3.org/TR/ccxml/

[11]EMMA: Extensible Multimodal Annotation
Markup Language. W3C Working Draft.
http://www.w3.0rg/TR/emma/

[12]Web Service Notification (WS-Notification).
Version 1.0. http://www-
106.ibm.com/developerworks/library/ws-
resource/ws-notification.pdf

[13] Microsoft SOAP Toolkit 3.0 User Guide.

[14]F. Liu, A. Saad, L. Li, and W. Chou, “A distributed
multimodal dialogue system based on dialogue
system and web convergence”, ICSLP 2002.

[15] Voice Extensible Markup Language (VoiceXML)
Version 2.0. W3C Proposed Recommendation.
http://www.w3.0rg/TR/2004/PR-voicexml20-
20040203/

[16]L. Dang, C. Jennings and D. Kelly, “Practical VoIP
Using VOCAL”. O’REILLY 2002.

[17]D. Collins, “Carrier Grade Voice Over IP”.
MCGRAW-HILL PROFESSIONAL TELECOM
2001.

[18]M. Schwartz, “Telecommunication Networks,
Protocols, Modeling and Analysis”. Addison-
Wesley Publishing Company 1987.

SIP APPLICATIONS SIP APPLICATIONS

SOAP SOAP SOAP SOAP
CLIENT SERVER CLIENT SERVER
i A j A
] |] |
1] 1]
| Web Services | | Web Services |
________ Y Y Y
re— — r— e
| SOAP SOAP i i SOAP SOAP |
: SERVER CLIENT ' : SERVER CLIENT '
1 1 I 1
i Werapper Layer Controller |)) i Werapper Layer Controller :
i : SIP Signaling i :
' < > '
: SIP UA : RTP : SIP UA :
: el I : wsIp :
1 1 1 1
Figure 1, The architecture of WSIP
APPLICATIONS WSsIP Remote
SIP UA
| _ _ O)SUBSCRIBE __ _
| L e 1) INVITE
54_ _ _ 2)ALLERTING :
1 1
1 1
- S)ACCEPTCALL _ _ - 4) 200 OK
| | "
1 1
' 5) CALL CONNECTED ' 5) ACK
1 L} d
- ——— <
| Col RTP _
, 6)DISCONNECT CALL < »
T > 7) BYE _
1] >
! 8) CALL DISCONNECTED ! 8) 200 OK
¢t—-———————————— - <
| Web Services | SIP

Figure 2 An example of call flow

